\begin{align}
\left<\text{energy rate}\right>
&= \frac23 \frac{q^2}{4\pi\epsilon_0 c^3}\frac{k_BT}{m}\omega_0^2
\end{align}
Draw a graph with \(\left<\text{energy rate}\right>\) (the optical power output) on the vertical axis, and the oscillator frequency (or alternatively \(\hbar\omega_0\)) on the horizontal axis. Sketch the relationship when
\(T=300\text{ K}\)
\(T=600\text{ K}\)
Assume the mass and charge of the the oscillators are constants.
Quantum prediction
When we account for energy quanta, the expression changes to
\begin{align}
\left<\text{energy rate}\right>
&=
\begin{cases}
\frac23 \frac{q^2}{4\pi\epsilon_0 c^3}\frac{k_BT}{m}\omega_0^2
& \text{when }\hbar\omega\ll k_BT
\\
\frac{\hbar\omega^3}{4\pi^2c^2}e^{-\frac{\hbar\omega}{k_BT}}
& \text{when }\hbar\omega\gg k_BT
\end{cases}
\end{align}
Sketch the relationship on your same graph, when
\(T=300\text{ K}\)
\(T=600\text{ K}\)
Assume the mass and charge of the the oscillators are constants.