Students use a completeness relations to write hydrogen atoms states in the energy and position bases.
A completeness relation is a really fancy way of writing the identity operator. You can write a completeness relation for ANY quantum system in ANY complete basis.
For spin 1/2 systems in the \(z\)-basis, we have \begin{align} 1&=\left|{+}\right\rangle \left\langle {+}\right|\, +\,\left|{-}\right\rangle \left\langle {-}\right|\\ &\doteq\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}1&0\end{pmatrix} +\begin{pmatrix}0\\1\end{pmatrix}\begin{pmatrix}0&1\end{pmatrix}\\ &=\begin{pmatrix}1&0\\0&0\end{pmatrix}+\begin{pmatrix}0&0\\0&1\end{pmatrix}\\ &=\begin{pmatrix}1&0\\0&1\end{pmatrix} \end{align} The trick is to SUM the ket/bras over a complete set of basis states.
For the quantum ring in the energy basis, we have \begin{align} 1&=\sum_{m=-\infty}^{\infty}\left|{m}\right\rangle \left\langle {m}\right| \end{align} or in the position basis, we have \begin{align} 1&=\int_{0}^{2\pi}\left|{\phi}\right\rangle \left\langle {\phi}\right|\, r_0\, d\phi \end{align}
- Write the completeness relations for the hydrogen atom in both the energy and the position bases.
- Briefly interpret the symbols in the following statements involving completeness relations for the hydrogen atom: \begin{align} \left|{\psi}\right\rangle &=\color{brown}{\left(\sum_{n=0}^{\infty}\sum_{\ell=0}^{n-1}\sum_{m=-\ell}^{\ell} \left|{n\ell m}\right\rangle \left\langle {n\ell m}\right|\right)}\left|{\psi}\right\rangle \\ &=\sum_{n=0}^{\infty}\sum_{\ell=0}^{n-1}\sum_{m=-\ell}^{\ell} \color{red}{\left|{n\ell m}\right\rangle c_{n\ell m}}\\ \left|{\psi}\right\rangle &=\color{blue}{\left(\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\infty} \left|{r\,\theta\,\phi}\right\rangle \left\langle {r\,\theta\,\phi}\right|\, r^2\sin\theta\, dr\, d\theta\, d\phi\right)} \left|{\psi}\right\rangle \\ &=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\infty} \left|{r\,\theta\,\phi}\right\rangle \left\langle {r\,\theta\,\phi}\middle|{\psi}\right\rangle \, r^2\sin\theta\, dr\, d\theta\, d\phi\\ &=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\infty} \color{red}{\left|{r\,\theta\,\phi}\right\rangle \psi(r, \theta, \phi)}\, r^2\sin\theta\, dr\, d\theta\, d\phi\\ \end{align}
- Use the hydrogen atom completeness relations to find new formulas for the following expressions. When would you use these formulas? \begin{align*} c_{n\ell m}&=\left\langle {n\ell m}\middle|{\psi}\right\rangle \\ &=?\\ \psi(r, \theta, \phi)&=\left\langle {r\, \theta\, \phi}\middle|{\psi}\right\rangle \\ &=? \end{align*}