For each of the following vector fields, find a potential function if one exists, or argue that none exists.
- \(\boldsymbol{\vec{F}} = (3x^2 + \tan y)\,\boldsymbol{\hat{x}} + (3y^2 + x\sec^2 y) \,\boldsymbol{\hat{y}}\)
- \(\boldsymbol{\vec{G}} = y\,\boldsymbol{\hat{x}} - x\,\boldsymbol{\hat{y}}\)
- \(\boldsymbol{\vec{H}} = (2xy + y^2 \sin z) \,\boldsymbol{\hat{x}} + (x^2 + z + 2xy\sin z) \,\boldsymbol{\hat{y}} + (y + z + xy^2 \cos z) \,\boldsymbol{\hat{z}}\)
- \(\boldsymbol{\vec{K}} = yz \,\boldsymbol{\hat{x}} + xz \,\boldsymbol{\hat{y}}\)
Students love this activity. Some groups will finish in 10 minutes or less; few will require as much as 30 minutes. ^{*}
none
A challenging question to ponder is why a surface fails to exist for nonconservative fields. Using an example such as \(y\,\boldsymbol{\hat{x}}+\boldsymbol{\hat{y}}\), prompt students to plot the field and examine its magnitude at various locations. Suggest piecing together level sets. There is serious geometry lurking that entails smoothness. Wrestling with this is healthy.
Write 3-5 sentences describing the connection between derivatives and integrals in the single-variable case. In other words, what is the one-dimensional version of MMM? Emphasize that much of vector calculus is generalizing concepts from single-variable theory.
The derivative check for conservative vector fields can be described using the same type of diagrams as used in the Murder Mystery Method; this is just moving down the diagram (via differentiation) from the row containing the components of the vector field, rather than moving up (via integration). We believe this should not be mentioned until after this lab.
When done in 3-d, this makes a nice introduction to curl --- which however is not needed until one is ready to do Stokes' Theorem. We would therefore recommend delaying this entire discussion, including the 2-d case, until then.