Consider the bottle-in-a-bottle problem in a previous problem set, summarized here.
The volume of the small bottle is 0.001 m3 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).
How many molecules of gas are initially in the small bottle? What is the final temperature of the gas after the pressures have equalized?
Compute the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas in both bottles, pressures equalized). Do not use the Sackur-Tetrode equation, use an alternative method.