Students, working in pairs, use their left arms to demonstrate time evolution in spin 1/2 quantum systems.
1. << Using Tinker Toys to Represent Spin 1/2 Quantum Systems | Arms Sequence for Complex Numbers and Quantum States | Going from Spin States to Wavefunctions >>
This activity is part of the Arms Sequence for Complex Numbers and Quantum States. If you have not used previous activities in the sequence, you may want to start with the introduction and a few of the prompts as listed in the first activity: Using Arms to Visualize Complex Numbers (MathBits) and a few of the prompts as listed in the third activity Using Arms to Represent Overall and Relative Phase in Spin 1/2 Systems.
This is a discovery activity that prepares students to understand the solution of the Schrodinger Equation.
Set-Up
Optional Warm-Up Have students represent the following states: \(\left|{+}\right\rangle _x\), \(\left|{-}\right\rangle _x\), \(\left|{+}\right\rangle _y\), \(\left|{-}\right\rangle _y\). This will help students recognize these states when they come up later in the activity.
“Represent the state \(\left|{+}\right\rangle _x\). Pick some arbitrary overall phase.”
“Represent the state \(e^{i\omega t}\left|{+}\right\rangle _x\). What does it look like? Does this state change with time?”
“What kind of motion with your arms would result in a state that changes with time?”
“How could you represent this time-evolving state in Dirac notation?”
Optional Concrete Example - Spin Precession: Ask to student to start in the state \(\left|{+}\right\rangle _x\) and act out the time evolution:
\[\left|{\psi(t)}\right\rangle = \frac{1}{\sqrt{2}}e^{i\omega\;t}\left|{+}\right\rangle +\frac{1}{\sqrt{2}}e^{-i\omega\;t}\left|{-}\right\rangle \]
accessibility_new Kinesthetic
10 min.
quantum states complex numbers arms Bloch sphere relative phase overall phase
Students, working in pairs, use the Arms representations to represent states of spin 1/2 system. Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT distinguish quantum states) and relative phase (which does distinguish quantum states).format_list_numbered Sequence
accessibility_new Kinesthetic
10 min.
Quantum State Vectors Complex Numbers Spin 1/2 Arms Representation
Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.group Small Group Activity
10 min.
spin 1/2 eigenstates quantum states
Arms Sequence for Complex Numbers and Quantum States
Students use Tinker Toys to represent each component in a two-state quantum spin system in all three standard bases (\(x\), \(y\), and \(z\)). Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT change the state of the system) and relative phase (which does change the state of the system). This activity is optional in the Arms Sequence Arms Sequence for Complex Numbers and Quantum States.assignment Homework
accessibility_new Kinesthetic
30 min.
accessibility_new Kinesthetic
10 min.
arms complex numbers Argand diagram complex plane rectangular form exponential form complex conjugate math
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.assignment Homework
\(z_1=i\),
group Small Group Activity
60 min.
Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation
Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.assignment Homework