Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.
1. << Visualization of Quantum Probabilities for a Particle Confined to a Ring | Quantum Ring Sequence |
This activity provides an opportunity to contrast two methods of finding expectation values.
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.assignment Homework
Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table
format_list_numbered Sequence
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.assignment Homework
assignment Homework
For electrons with an energy \(\varepsilon\gg mc^2\), where \(m\) is the mass of the electron, the energy is given by \(\varepsilon\approx pc\) where \(p\) is the momentum. For electrons in a cube of volume \(V=L^3\) the momentum takes the same values as for a non-relativistic particle in a box.
Show that in this extreme relativistic limit the Fermi energy of a gas of \(N\) electrons is given by \begin{align} \varepsilon_F &= \hbar\pi c\left(\frac{3n}{\pi}\right)^{\frac13} \end{align} where \(n\equiv \frac{N}{V}\) is the number density.
Show that the total energy of the ground state of the gas is \begin{align} U_0 &= \frac34 N\varepsilon_F \end{align}
group Small Group Activity
60 min.