Students count the quadratic degrees of freedom of a few toy molecules to predict their internal energy at temperature \(T\).
This follows Equipartition theoremIf the microscopic world was classical, predict \(U_{\text{classical}}(T)\) for the following “toy molecules” in the gas phase.
face Lecture
30 min.
assignment Homework
assignment Homework
assignment Homework
Einstein condensation temperature Starting from the density of free particle orbitals per unit energy range \begin{align} \mathcal{D}(\varepsilon) = \frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12} \end{align} show that the lowest temperature at which the total number of atoms in excited states is equal to the total number of atoms is \begin{align} T_E &= \frac1{k_B} \frac{\hbar^2}{2M} \left( \frac{N}{V} \frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi} \right)^{\frac23} T_E &= \end{align} The infinite sum may be numerically evaluated to be 2.612. Note that the number derived by integrating over the density of states, since the density of states includes all the states except the ground state.
Note: This problem is solved in the text itself. I intend to discuss Bose-Einstein condensation in class, but will not derive this result.
group Small Group Activity
30 min.
assignment Homework
face Lecture
120 min.
Fermi level fermion boson Bose gas Bose-Einstein condensate ideal gas statistical mechanics phase transition
These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.assignment Homework
Find an expression for the free energy as a function of \(T\) of a system with two states, one at energy 0 and one at energy \(\varepsilon\).
From the free energy, find expressions for the internal energy \(U\) and entropy \(S\) of the system.
Plot the entropy versus \(T\). Explain its asymptotic behavior as the temperature becomes high.
Plot the \(S(T)\) versus \(U(T)\). Explain the maximum value of the energy \(U\).
group Small Group Activity
30 min.
face Lecture
120 min.
phase transformation Clausius-Clapeyron mean field theory thermodynamics
These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.