Memorize Power Series

    • assignment Memorize $d\vec{r}$

      assignment Homework

      Memorize \(d\vec{r}\)
      Static Fields 2022 (2 years)

      Write \(\vec{dr}\) in rectangular, cylindrical, and spherical coordinates.

      1. Rectangular: \begin{equation} \vec{dr}= \end{equation}
      2. Cylindrical: \begin{equation} \vec{dr}= \end{equation}
      3. Spherical: \begin{equation} \vec{dr}= \end{equation}

    • face Thermal radiation and Planck distribution

      face Lecture

      120 min.

      Thermal radiation and Planck distribution
      Thermal and Statistical Physics 2020

      Planck distribution blackbody radiation photon statistical mechanics

      These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.
    • assignment Potential vs. Potential Energy

      assignment Homework

      Potential vs. Potential Energy
      Static Fields 2022 (4 years)

      In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:

      1. Find the value of the electrostatic potential energy of a system consisting of a hydrogen nucleus and an electron separated by the Bohr radius. Find the value of the gravitational potential energy of the same two particles at the same radius. Use the same system of units in both cases. Compare and the contrast the two answers.
      2. Find the value of the electrostatic potential due to the nucleus of a hydrogen atom at the Bohr radius. Find the gravitational potential due to the nucleus at the same radius. Use the same system of units in both cases. Compare and contrast the two answers.
      3. Briefly discuss at least one other fundamental difference between electromagnetic and gravitational systems. Hint: Why are we bound to the earth gravitationally, but not electromagnetically?

    • assignment Series Notation 1

      assignment Homework

      Series Notation 1

      Power Series Sequence (E&M)

      Static Fields 2022 (4 years)

      Write out the first four nonzero terms in the series:

      1. \[\sum\limits_{n=0}^\infty \frac{1}{n!}\]

      2. \[\sum\limits_{n=1}^\infty \frac{(-1)^n}{n!}\]
      3. \begin{equation} \sum\limits_{n=0}^\infty {(-2)^{n}\,\theta^{2n}} \end{equation}

    • assignment Contours

      assignment Homework

      Contours
      Static Fields 2022 (4 years)

      Shown below is a contour plot of a scalar field, \(\mu(x,y)\). Assume that \(x\) and \(y\) are measured in meters and that \(\mu\) is measured in kilograms. Four points are indicated on the plot.

      1. Determine \(\frac{\partial\mu}{\partial x}\) and \(\frac{\partial\mu}{\partial y}\) at each of the four points.
      2. On a printout of the figure, draw a qualitatively accurate vector at each point corresponding to the gradient of \(\mu(x,y)\) using your answers to part a above. How did you choose a scale for your vectors? Describe how the direction of the gradient vector is related to the contours on the plot and what property of the contour map is related to the magnitude of the gradient vector.
      3. Evaluate the gradient of \(h(x,y)=(x+1)^2\left(\frac{x}{2}-\frac{y}{3}\right)^3\) at the point \((x,y)=(3,-2)\).

    • assignment Boltzmann probabilities

      assignment Homework

      Boltzmann probabilities
      Energy Entropy Boltzmann probabilities Thermal and Statistical Physics 2020 (3 years) Consider a three-state system with energies \((-\epsilon,0,\epsilon)\).
      1. At infinite temperature, what are the probabilities of the three states being occupied? What is the internal energy \(U\)? What is the entropy \(S\)?
      2. At very low temperature, what are the three probabilities?
      3. What are the three probabilities at zero temperature? What is the internal energy \(U\)? What is the entropy \(S\)?
      4. What happens to the probabilities if you allow the temperature to be negative?
    • assignment Nucleus in a Magnetic Field

      assignment Homework

      Nucleus in a Magnetic Field
      Energy and Entropy 2021 (2 years)

      Nuclei of a particular isotope species contained in a crystal have spin \(I=1\), and thus, \(m = \{+1,0,-1\}\). The interaction between the nuclear quadrupole moment and the gradient of the crystalline electric field produces a situation where the nucleus has the same energy, \(E=\varepsilon\), in the state \(m=+1\) and the state \(m=-1\), compared with an energy \(E=0\) in the state \(m=0\), i.e. each nucleus can be in one of 3 states, two of which have energy \(E=\varepsilon\) and one has energy \(E=0\).

      1. Find the Helmholtz free energy \(F = U-TS\) for a crystal containing \(N\) nuclei which do not interact with each other.

      2. Find an expression for the entropy as a function of temperature for this system. (Hint: use results of part a.)

      3. Indicate what your results predict for the entropy at the extremes of very high temperature and very low temperature.

    • assignment Power from the Ocean

      assignment Homework

      Power from the Ocean
      heat engine efficiency Energy and Entropy 2021 (2 years)

      It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.

      1. What is the maximum possible efficiency of an engine operating between these two temperatures?

      2. If the engine is to produce 1 GW of electrical power, what minimum volume of water must be processed every second? Note that the specific heat capacity of water \(c_p = 4.2\) Jg\(^{-1}\)K\(^{-1}\) and the density of water is 1 g cm\(^{-3}\), and both are roughly constant over this temperature range.

    • assignment Power Series Coefficients 2

      assignment Homework

      Power Series Coefficients 2
      Static Fields 2022 (4 years) Use the formula for a Taylor series: \[f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f(a)}{dz^n} (z-a)^n\] to find the first three non-zero terms of a series expansion for \(f(z)=e^{-kz}\) around \(z=3\).
    • assignment Power Series Coefficients 3

      assignment Homework

      Power Series Coefficients 3
      Static Fields 2022 (4 years) Use the formula for a Taylor series: \[f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f(a)}{dz^n} (z-a)^n\] to find the first three non-zero terms of a series expansion for \(f(z)=\cos(kz)\) around \(z=2\).
  • Static Fields 2022 (2 years)

    Look up and memorize the power series to fourth order for \(e^z\), \(\sin z\), \(\cos z\), \((1+z)^p\) and \(\ln(1+z)\). For what values of \(z\) do these series converge?