## Circle Trig Complex

• Complex Numbers Exponential Form Rectangular Form Polar Form Unit Circle
• accessibility_new Using Arms to Visualize Complex Numbers (MathBits)

accessibility_new Kinesthetic

10 min.

##### Using Arms to Visualize Complex Numbers (MathBits)
Lie Groups and Lie Algebras 23 (4 years)

Arms Sequence for Complex Numbers and Quantum States

Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.
• format_list_numbered Arms Sequence for Complex Numbers and Quantum States

format_list_numbered Sequence

##### Arms Sequence for Complex Numbers and Quantum States
“Arms” is an engaging representation of complex numbers in which students use their left arms to geometrically represent numbers in the complex plane (an Argand diagram). The sequence starts with pure math activities in which students represent a single complex number (using prompts in both rectangular and exponential forms), demonstrate multiplication of complex numbers in exponential form, and act out a number of different linear transformation on pairs of complex numbers. Later activities, relevant to spin 1/2 systems in quantum mechanics, explore overall phases, relative phases, and time dependence. These activities can be combined and sequenced in many different ways; see the Instructor's Guide for the second activity for ideas about how to introduce the Arms representation the first time you use it.
• assignment Phase

assignment Homework

##### Phase
Complex Numbers Rectangular Form Exponential Form Square of the Norm Overall Phase Quantum Fundamentals 2023 (3 years)
1. For each of the following complex numbers $z$, find $z^2$, $\vert z\vert^2$, and rewrite $z$ in exponential form, i.e. as a magnitude times a complex exponential phase:
• $z_1=i$,

• $z_2=2+2i$,
• $z_3=3-4i$.
2. In quantum mechanics, it turns out that the overall phase for a state does not have any physical significance. Therefore, you will need to become quick at rearranging the phase of various states. For each of the vectors listed below, rewrite the vector as an overall complex phase times a new vector whose first component is real and positive. $\left|D\right\rangle\doteq \begin{pmatrix} 7e^{i\frac{\pi}{6}}\\ 3e^{i\frac{\pi}{2}}\\ -1\\ \end{pmatrix}\\ \left|E\right\rangle\doteq \begin{pmatrix} i\\ 4\\ \end{pmatrix}\\ \left|F\right\rangle\doteq \begin{pmatrix} 2+2i\\ 3-4i\\ \end{pmatrix}$
• accessibility_new Spin 1/2 with Arms

accessibility_new Kinesthetic

10 min.

##### Spin 1/2 with Arms
Quantum Fundamentals 2023 (2 years)

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.
• accessibility_new Using Arms to Represent Overall and Relative Phase in Spin 1/2 Systems

accessibility_new Kinesthetic

10 min.

##### Using Arms to Represent Overall and Relative Phase in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use the Arms representations to represent states of spin 1/2 system. Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT distinguish quantum states) and relative phase (which does distinguish quantum states).
• assignment Graphs Involving the Distance Formula

assignment Homework

##### Graphs Involving the Distance Formula
Static Fields 2023 (6 years)

Learn more about the geometry of $\vert \vec{r}-\vec{r'}\vert$ in two dimensions.

1. Make sketches of the following functions, by hand, on the same axes: \begin{align} y &= \sin x\\ y &= \sin(2+x) \end{align} Briefly describe the role that the number 2 plays in the shape of the second graph
2. Make a sketch of the graph $$\vert \vec{r} - \vec{a} \vert = 2$$

for each of the following values of $\vec a$: \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}

3. Derive a more familiar equation equivalent to $$\vert \vec r - \vec a \vert = 2$$ for arbitrary $\vec a$, by expanding $\vec r$ and $\vec a$ in rectangular coordinates. Simplify as much as possible. (Ok, ok, I know this is a terribly worded question. What do I mean by “more familiar"? What do I mean by “simplify as much as possible"? Why am I making you read my mind? Try it anyway. Real life is not full of carefully worded problems. Bonus points to anyone who can figure out a better way of wording the question that doesn't give the point away.)
4. Write a brief description of the geometric meaning of the equation $$\vert \vec r - \vec a \vert = 2$$

• assignment_ind Vector Differential--Rectangular

assignment_ind Small White Board Question

10 min.

##### Vector Differential--Rectangular
Vector Calculus II 23 (8 years)

Integration Sequence

In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.

This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..

• group Electric Field Due to a Ring of Charge

group Small Group Activity

30 min.

##### Electric Field Due to a Ring of Charge
Static Fields 2023 (8 years)

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use Coulomb's Law $\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}$ to find an integral expression for the electric field, $\vec{E}(\vec{r})$, everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for $\vec{E}(\vec{r})$ either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

• accessibility_new Curvilinear Basis Vectors

accessibility_new Kinesthetic

10 min.

##### Curvilinear Basis Vectors
Static Fields 2023 (9 years)

Curvilinear Coordinate Sequence

Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).
• accessibility_new Using Arms to Visualize Transformations of Complex Two-Component Vectors (MathBits)

accessibility_new Kinesthetic

30 min.

##### Using Arms to Visualize Transformations of Complex Two-Component Vectors (MathBits)
Quantum Fundamentals 2021

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.
• Quantum Fundamentals 2023 (2 years)

Find the rectangular coordinates of the point where the angle $\frac{5\pi}{3}$ meets the unit circle. If this were a point in the complex plane, what would be the rectangular and exponential forms of the complex number? (See figure.)