- Complex Numbers Rectangular Form Exponential Form Square of the Norm Overall Phase
*assignment*One-dimensional gas*assignment*Homework##### One-dimensional gas

Ideal gas Entropy Tempurature Thermal and Statistical Physics 2020 Consider an ideal gas of \(N\) particles, each of mass \(M\), confined to a one-dimensional line of length \(L\). The particles have spin zero (so you can ignore spin) and do not interact with one another. Find the entropy at temperature \(T\). You may assume that the temperature is high enough that \(k_B T\) is much greater than the ground state energy of one particle.*group*Raising and Lowering Operators for Spin*group*Small Group Activity60 min.

##### Raising and Lowering Operators for Spin

Central Forces 2023 (2 years)*group*Working with Representations on the Ring*group*Small Group Activity30 min.

##### Working with Representations on the Ring

Central Forces 2023 (3 years)*keyboard*Position operator*keyboard*Computational Activity120 min.

##### Position operator

Computational Physics Lab II 2022quantum mechanics operator matrix element particle in a box eigenfunction

Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.*group*Matrix Representation of Angular Momentum*group*Small Group Activity10 min.

##### Matrix Representation of Angular Momentum

Central Forces 2023 (2 years)*group*Energy and Angular Momentum for a Quantum Particle on a Ring*group*Small Group Activity30 min.

##### Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.*keyboard*Kinetic energy*keyboard*Computational Activity120 min.

##### Kinetic energy

Computational Physics Lab II 2022finite difference hamiltonian quantum mechanics particle in a box eigenfunctions

Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use`numpy`

to solve for eigenvalues and eigenstates, which they visualize.*assignment*Working with Representations on the Ring*assignment*Homework##### Working with Representations on the Ring

Central Forces 2023 (3 years)The following are 3 different representations for the \(\textbf{same}\) state on a quantum ring for \(r_0=1\) \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}

- With each representation of the state given above, explicitly calculate the probability that \(L_z=-1\hbar\). Then, calculate all other non-zero probabilities for values of \(L_z\) with a method/representation of your choice.
- Explain how you could be sure you calculated all of the non-zero probabilities.
- If you measured the \(z\)-component of angular momentum to be \(3\hbar\), what would the state of the particle be immediately after the measurement is made?
- With each representation of the state given above, explicitly calculate the probability that \(E=\frac{9}{2}\frac{\hbar^2}{I}\). Then, calculate all other non-zero probabilities for values of \(E\) with a method of your choice.
If you measured the energy of the state to be \(\frac{9}{2}\frac{\hbar^2}{I}\), what would the state of the particle be immediately after the measurement is made?

*assignment*Frequency*assignment*Homework##### Frequency

Quantum Mechanics Time Evolution Spin Precession Expectation Value Bohr Frequency Quantum Fundamentals 2022 (2 years) Consider a two-state quantum system with a Hamiltonian \begin{equation} \hat{H}\doteq \begin{pmatrix} E_1&0\\ 0&E_2 \end{pmatrix} \end{equation} Another physical observable \(M\) is described by the operator \begin{equation} \hat{M}\doteq \begin{pmatrix} 0&c\\ c&0 \end{pmatrix} \end{equation} where \(c\) is real and positive. Let the initial state of the system be \(\left|{\psi(0)}\right\rangle =\left|{m_1}\right\rangle \), where \(\left|{m_1}\right\rangle \) is the eigenstate corresponding to the larger of the two possible eigenvalues of \(\hat{M}\). What is the frequency of oscillation of the expectation value of \(M\)? This frequency is the Bohr frequency.*accessibility_new*Spin 1/2 with Arms*accessibility_new*Kinesthetic10 min.

##### Spin 1/2 with Arms

Quantum Fundamentals 2022 (2 years)Quantum State Vectors Complex Numbers Spin 1/2 Arms Representation

Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.-
Quantum Fundamentals 2022 (2 years)
- For each of the following complex numbers \(z\), find \(z^2\), \(\vert z\vert^2\), and rewrite \(z\) in exponential form, i.e. as a magnitude times a complex exponential phase:
\(z_1=i\),

- \(z_2=2+2i\),
- \(z_3=3-4i\).

- In quantum mechanics, it turns out that the overall phase for a state does not have any physical significance. Therefore, you will need to become quick at rearranging the phase of various states. For each of the vectors listed below, rewrite the vector as an overall complex phase times a new vector whose first component is real and positive. \[\left|D\right\rangle\doteq \begin{pmatrix} 7e^{i\frac{\pi}{6}}\\ 3e^{i\frac{\pi}{2}}\\ -1\\ \end{pmatrix}\\ \left|E\right\rangle\doteq \begin{pmatrix} i\\ 4\\ \end{pmatrix}\\ \left|F\right\rangle\doteq \begin{pmatrix} 2+2i\\ 3-4i\\ \end{pmatrix} \]

- For each of the following complex numbers \(z\), find \(z^2\), \(\vert z\vert^2\), and rewrite \(z\) in exponential form, i.e. as a magnitude times a complex exponential phase: