• Quantum Fundamentals 2022 (2 years)

    Consider the following wave functions (over all space - not the infinite square well!):

    \(\psi_a(x) = A e^{-x^2/3}\)

    \(\psi_b(x) = B \frac{1}{x^2+2} \)

    \(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)

    In each case:

    1. normalize the wave function,
    2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
    3. find the probability that the particle is measured to be in the range \(0<x<1\).

  • Media & Figures
    • figures/psi_a.png
    • figures/psi_b.png
    • figures/psi_c.png