assignment Homework
Consider a very light particle of mass \(\mu\) scattering from a very
heavy, stationary particle of mass \(M\). The force between the two
particles is a repulsive Coulomb force \(\frac{k}{r^2}\). The
impact parameter \(b\) in a scattering problem is defined to be the
distance which would be the closest approach if there were no
interaction (See Figure). The initial velocity (far from the
scattering event) of the mass \(\mu\) is \(\vec v_0\). Answer the
following questions about this situation in terms of \(k\), \(M\),
\(\mu\), \(\vec v_0\), and \(b\). ()It is not necessarily wise to answer
these questions in order.)
assignment Homework
Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.
assignment Homework
You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.
assignment Homework
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.assignment Homework
assignment Homework
In each of the following sums, shift the index \(n\rightarrow n+2\). Don't forget to shift the limits of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and convince yourself that the two different expressions for each sum are the same:
group Small Group Activity
30 min.
face Lecture
120 min.
phase transformation Clausius-Clapeyron mean field theory thermodynamics
These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.
Make a sketch of the graph \begin{equation} \vert \vec{r} - \vec{a} \vert = 2 \end{equation}
for each of the following values of \(\vec a\): \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}