assignment Homework
Use integration to find the total mass of the icecream in a packed cone (both the cone and the hemisphere of icecream on top).
assignment Homework
Start with \(d\vec{r}\) in rectangular, cylindrical, and spherical coordinates. Use these expressions to write the scalar area elements \(dA\) (for different coordinate equals constant surfaces) and the volume element \(d\tau\). It might help you to think of the following surfaces: The various sides of a rectangular box, a finite cylinder with a top and a bottom, a half cylinder, and a hemisphere with both a curved and a flat side, and a cone.
group Small Group Activity
30 min.
keyboard Computational Activity
120 min.
assignment Homework
group Small Group Activity
30 min.
assignment_ind Small White Board Question
10 min.
Cylindrical coordinates spherical coordinates curvilinear coordinates
First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.group Small Group Activity
30 min.
Taylor series power series approximation
This activity starts with a brief lecture introduction to power series and a short derivation of the formula for calculating the power series coefficients.
\[c_n={1\over n!}\, f^{(n)}(z_0)\]
Students use this formula to compute the power series coefficients for a \(\sin\theta\) (around both the origin and (if time allows) \(\frac{\pi}{6}\)). The meaning of these coefficients and the convergence behavior for each approximation is discussed in the whole-class wrap-up and in the follow-up activity: Visualization of Power Series Approximations.
groups Whole Class Activity
10 min.
There are two versions of this activity:
As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.
As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distribued to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.