1. << Directional Derivatives | Gradient Sequence | The Path >>
group Small Group Activity
30 min.
face Lecture
30 min.
group Small Group Activity
30 min.
assignment Homework
Consider a white dwarf of mass \(M\) and radius \(R\). The dwarf consists of ionized hydrogen, thus a bunch of free electrons and protons, each of which are fermions. Let the electrons be degenerate but nonrelativistic; the protons are nondegenerate.
Show that the order of magnitude of the gravitational self-energy is \(-\frac{GM^2}{R}\), where \(G\) is the gravitational constant. (If the mass density is constant within the sphere of radius \(R\), the exact potential energy is \(-\frac53\frac{GM^2}{R}\)).
Show that the order of magnitude of the kinetic energy of the electrons in the ground state is \begin{align} \frac{\hbar^2N^{\frac53}}{mR^2} \approx \frac{\hbar^2M^{\frac53}}{mM_H^{\frac53}R^2} \end{align} where \(m\) is the mass of an electron and \(M_H\) is the mas of a proton.
Show that if the gravitational and kinetic energies are of the same order of magnitude (as required by the virial theorem of mechanics), \(M^{\frac13}R \approx 10^{20} \text{g}^{\frac13}\text{cm}\).
If the mass is equal to that of the Sun (\(2\times 10^{33}g\)), what is the density of the white dwarf?
It is believed that pulsars are stars composed of a cold degenerate gas of neutrons (i.e. neutron stars). Show that for a neutron star \(M^{\frac13}R \approx 10^{17}\text{g}^{\frac13}\text{cm}\). What is the value of the radius for a neutron star with a mass equal to that of the Sun? Express the result in \(\text{km}\).
group Small Group Activity
30 min.
group Small Group Activity
30 min.
assignment Homework
group Small Group Activity
30 min.
group Small Group Activity
30 min.
assignment Homework
Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.
You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.
Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.
You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.