assignment Homework
assignment Homework
For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.
assignment Homework
In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:
assignment Homework
For each case below, find the total charge.
group Small Group Activity
30 min.
assignment Homework
Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).
assignment Homework
Shown above is a two-dimensional vector field.
Determine whether the divergence at point A and at point C is positive, negative, or zero.
assignment Homework
Calculate the divergence of each of the following vector fields. You may look up the formulas for divergence in curvilinear coordinates.
group Small Group Activity
60 min.
Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics
Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.assignment Homework
The function \(\theta(x)\) (the Heaviside or unit step function) is a defined as: \begin{equation} \theta(x) =\begin{cases} 1 & \textrm{for}\; x>0 \\ 0 & \textrm{for}\; x<0 \end{cases} \end{equation} This function is discontinuous at \(x=0\) and is generally taken to have a value of \(\theta(0)=1/2\).
Make sketches of the following functions, by hand, on axes with the same scale and domain. Briefly describe, using good scientific writing that includes both words and equations, the role that the number two plays in the shape of each graph: \begin{align} y &= \theta (x)\\ y &= 2+\theta (x)\\ y &= \theta(2+x)\\ y &= 2\theta (x)\\ y &= \theta (2x) \end{align}
The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}
This problem explores the consequences of the divergence theorem for this shell.