assignment Homework
assignment Homework
assignment Homework
assignment Homework
Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation}
assignment Homework
Consider a system that may be unoccupied with energy zero, or occupied by one particle in either of two states, one of energy zero and one of energy \(\varepsilon\). Find the Gibbs sum for this system is in terms of the activity \(\lambda\equiv e^{\beta\mu}\). Note that the system can hold a maximum of one particle.
Solve for the thermal average occupancy of the system in terms of \(\lambda\).
Show that the thermal average occupancy of the state at energy \(\varepsilon\) is \begin{align} \langle N(\varepsilon)\rangle = \frac{\lambda e^{-\frac{\varepsilon}{kT}}}{\mathcal{Z}} \end{align}
Find an expression for the thermal average energy of the system.
Allow the possibility that the orbitals at \(0\) and at \(\varepsilon\) may each be occupied each by one particle at the same time; Show that \begin{align} \mathcal{Z} &= 1 + \lambda + \lambda e^{-\frac{\varepsilon}{kT}} + \lambda^2 e^{-\frac{\varepsilon}{kT}} \\ &= (1+\lambda)\left(1+e^{-\frac{\varepsilon}{kT}}\right) \end{align} Because \(\mathcal{Z}\) can be factored as shown, we have in effect two independent systems.
assignment Homework
Consider a system which has an internal energy \(U\) defined by: \begin{align} U &= \gamma V^\alpha S^\beta \end{align} where \(\alpha\), \(\beta\) and \(\gamma\) are constants. The internal energy is an extensive quantity. What constraint does this place on the values \(\alpha\) and \(\beta\) may have?
assignment Homework
face Lecture
5 min.
computer Computer Simulation
30 min.
assignment Homework
Consider the finite line with a uniform charge density from class.