assignment Homework
Suppose that a system of \(N\) atoms of type \(A\) is placed in diffusive contact with a system of \(N\) atoms of type \(B\) at the same temperature and volume.
Show that after diffusive equilibrium is reached the total entropy is increased by \(2Nk\ln 2\). The entropy increase \(2Nk\ln 2\) is known as the entropy of mixing.
If the atoms are identical (\(A=B\)), show that there is no increase in entropy when diffusive contact is established. The difference has been called the Gibbs paradox.
Since the Helmholtz free energy is lower for the mixed \(AB\) than for the separated \(A\) and \(B\), it should be possible to extract work from the mixing process. Construct a process that could extract work as the two gasses are mixed at fixed temperature. You will probably need to use walls that are permeable to one gas but not the other.
This course has not yet covered work, but it was covered in Energy and Entropy, so you may need to stretch your memory to finish part (c).
assignment Homework
face Lecture
120 min.
paramagnet entropy temperature statistical mechanics
These lecture notes for the second week of Thermal and Statistical Physics involve relating entropy and temperature in the microcanonical ensemble, using a paramagnet as an example. These notes include a few small group activities.assignment Homework
Calculate the divergence of each of the following vector fields. You may look up the formulas for divergence in curvilinear coordinates.
assignment Homework
Calculate the curl of each of the following vector fields. You may look up the formulas for curl in curvilinear coordinates.
assignment Homework
Determine the total mass of each of the slabs below.
assignment Homework
Find the gradient of each of the following functions:
face Lecture
120 min.
chemical potential Gibbs distribution grand canonical ensemble statistical mechanics
These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.assignment Homework
Consider the fields at a point \(\vec{r}\) due to a point charge located at \(\vec{r}'\).
assignment Homework
You have a charge distribution on the \(x\)-axis composed of two point charges: one with charge \(+3q\) located at \(x=-d\) and the other with charge \(-q\) located at \(x=+d\).
Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation}