## Quantum Particle in a 2-D Box

• Central Forces 2023 (4 years) You know that the normalized spatial eigenfunctions for a particle in a 1-D box of length $L$ are $\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}$. If you want the eigenfunctions for a particle in a 2-D box, then you just multiply together the eigenfunctions for a 1-D box in each direction. (This is what the separation of variables procedure tells you to do.)
1. Find the normalized eigenfunctions for a particle in a 2-D box with sides of length $L_x$ in the $x$-direction and length $L_y$ in the $y$-direction.
2. Find the Hamiltonian for a 2-D box and show that your eigenstates are indeed eigenstates and find a formula for the possible energies
3. Any sufficiently smooth spatial wave function inside a 2-D box can be expanded in a double sum of the product wave functions, i.e. $$\psi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\; \hbox{eigenfunction}_n(x)\;\hbox{eigenfunction}_m(y)$$ Using your expressions from part (a) above, write out all the terms in this sum out to $n=3$, $m=3$. Arrange the terms, conventionally, in terms of increasing energy.

You may find it easier to work in bra/ket notation: \begin{align*} \left|{\psi}\right\rangle &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{n}\right\rangle \left|{m}\right\rangle \\ &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{nm}\right\rangle \end{align*}

4. Find a formula for the $c_{nm}$s in part (b). Find the formula first in bra ket notation and then rewrite it in wave function notation.