group Small Group Activity
30 min.
assignment Homework
In science fiction movies, characters often talk about a spaceship “spiralling in” right before it hits the planet. But all orbits in a \(1/r^2\) force are conic sections, not spirals. This spiralling in happens because the spaceship hits atmosphere and the drag from the atmosphere changes the shape of the orbit. But, in an alternate universe, we might have other force laws.
Find the force law for a mass \(\mu\), under the influence of a central-force field, that moves in a logarithmic spiral orbit given by \(r = ke^{\alpha \phi}\), where \(k\) and \(\alpha\) are constants.
assignment Homework
In science fiction movies, characters often talk about a spaceship “spiralling in” right before it hits the planet. But all orbits in a \(1/r^2\) force are conic sections, not spirals. This spiralling in happens because the spaceship hits atmosphere and the drag from the atmosphere changes the shape of the orbit. But, in an alternate universe, we might have other force laws.
Find the force law for a central-force field that allows a particle to move in a spiral orbit given by \(r=k\phi^2\), where \(k\) is a constant.
computer Mathematica Activity
30 min.
groups Whole Class Activity
10 min.
assignment Homework
The figure below shows the position vector \(\vec r\) and the orbit of a “fictitious” reduced mass \(\mu\).
assignment Homework
assignment Homework
Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table
Which of the following forces can be central forces? which cannot? If the force CAN be a central force, explain the circumstances that would allow it to be a central force.