assignment Homework
Consider a white dwarf of mass \(M\) and radius \(R\). The dwarf consists of ionized hydrogen, thus a bunch of free electrons and protons, each of which are fermions. Let the electrons be degenerate but nonrelativistic; the protons are nondegenerate.
Show that the order of magnitude of the gravitational self-energy is \(-\frac{GM^2}{R}\), where \(G\) is the gravitational constant. (If the mass density is constant within the sphere of radius \(R\), the exact potential energy is \(-\frac53\frac{GM^2}{R}\)).
Show that the order of magnitude of the kinetic energy of the electrons in the ground state is \begin{align} \frac{\hbar^2N^{\frac53}}{mR^2} \approx \frac{\hbar^2M^{\frac53}}{mM_H^{\frac53}R^2} \end{align} where \(m\) is the mass of an electron and \(M_H\) is the mas of a proton.
Show that if the gravitational and kinetic energies are of the same order of magnitude (as required by the virial theorem of mechanics), \(M^{\frac13}R \approx 10^{20} \text{g}^{\frac13}\text{cm}\).
If the mass is equal to that of the Sun (\(2\times 10^{33}g\)), what is the density of the white dwarf?
It is believed that pulsars are stars composed of a cold degenerate gas of neutrons (i.e. neutron stars). Show that for a neutron star \(M^{\frac13}R \approx 10^{17}\text{g}^{\frac13}\text{cm}\). What is the value of the radius for a neutron star with a mass equal to that of the Sun? Express the result in \(\text{km}\).
keyboard Computational Activity
120 min.
finite difference hamiltonian quantum mechanics particle in a box eigenfunctions
Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then usenumpy
to solve for eigenvalues and eigenstates, which they visualize.
assignment Homework
assignment Homework
assignment Homework
assignment Homework
face Lecture
120 min.
Fermi level fermion boson Bose gas Bose-Einstein condensate ideal gas statistical mechanics phase transition
These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.assignment Homework
It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.
What is the maximum possible efficiency of an engine operating between these two temperatures?
group Small Group Activity
30 min.
Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.