group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.group Small Group Activity
30 min.
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.keyboard Computational Activity
120 min.
quantum mechanics operator matrix element particle in a box eigenfunction
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.keyboard Computational Activity
120 min.
inner product wave function quantum mechanics particle in a box
Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.assignment Homework
assignment Homework
Find \(N\).