assignment Homework
A helix with 17 turns has height \(H\) and radius \(R\). Charge is distributed on the helix so that the charge density increases like (i.e. proportional to) the square of the distance up the helix. At the bottom of the helix the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the top of the helix, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the helix?
assignment Homework
The figure below shows the position vector \(\vec r\) and the orbit of a “fictitious” reduced mass \(\mu\).
assignment Homework
group Small Group Activity
120 min.
assignment Homework
In science fiction movies, characters often talk about a spaceship “spiralling in” right before it hits the planet. But all orbits in a \(1/r^2\) force are conic sections, not spirals. This spiralling in happens because the spaceship hits atmosphere and the drag from the atmosphere changes the shape of the orbit. But, in an alternate universe, we might have other force laws.
Find the force law for a mass \(\mu\), under the influence of a central-force field, that moves in a logarithmic spiral orbit given by \(r = ke^{\alpha \phi}\), where \(k\) and \(\alpha\) are constants.
face Lecture
120 min.
Gibbs entropy information theory probability statistical mechanics
These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.assignment Homework
Consider a system which has an internal energy \(U\) defined by: \begin{align} U &= \gamma V^\alpha S^\beta \end{align} where \(\alpha\), \(\beta\) and \(\gamma\) are constants. The internal energy is an extensive quantity. What constraint does this place on the values \(\alpha\) and \(\beta\) may have?
assignment Homework
assignment Homework
For each case below, find the total charge.
assignment Homework
In a solid, a free electron doesn't see” a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be screened” from far away. A common model for such problems is described by the Yukawa or screened potential: \begin{equation} U(r)= -\frac{k}{r} e^{-\frac{r}{\alpha}} \end{equation}