Power from the Ocean

  • heat engine efficiency
    • assignment Power Plant on a River

      assignment Homework

      Power Plant on a River
      efficiency heat engine carnot Energy and Entropy 2021 (2 years)

      At a power plant that produces 1 GW (\(10^{9} \text{watts}\)) of electricity, the steam turbines take in steam at a temperature of \(500^{o}C\), and the waste energy is expelled into the environment at \(20^{o}C\).

      1. What is the maximum possible efficiency of this plant?

      2. Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at \(15^oC\). Roughly how much money can you make in a year by installing your improved hardware, if you sell the additional electricity for 10 cents per kilowatt-hour?

      3. At what rate will the plant expel waste energy into this river?

      4. Assume the river's flow rate is 100 m\(^{3}/\)s. By how much will the temperature of the river increase?

      5. To avoid this “thermal pollution” of the river the plant could instead be cooled by evaporation of river water. This is more expensive, but it is environmentally preferable. At what rate must the water evaporate? What fraction of the river must be evaporated?

    • assignment Heat of vaporization of ice

      assignment Homework

      Heat of vaporization of ice
      Vaporization Heat Thermal and Statistical Physics 2020 The pressure of water vapor over ice is 518 Pa at \(-2^\circ\text{C}\). The vapor pressure of water at its triple point is 611 Pa, at 0.01\(^\circ\text{C}\) (see Estimate in \(\text{J mol}^{-1}\) the heat of vaporization of ice just under freezing. How does this compare with the heat of vaporization of water?
    • assignment Calculation of $\frac{dT}{dp}$ for water

      assignment Homework

      Calculation of \(\frac{dT}{dp}\) for water
      Clausius-Clapeyron Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.
    • assignment Ice calorimetry lab questions

      assignment Homework

      Ice calorimetry lab questions
      This question is about the lab we did in class: Ice Calorimetry Lab.
      1. Plot your data I Plot the temperature versus total energy added to the system (which you can call \(Q\)). To do this, you will need to integrate the power. Discuss this curve and any interesting features you notice on it.
      2. Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier. You can find the heat capacity from the previous plot by looking at the slope. \begin{align} C_p &= \left(\frac{\partial Q}{\partial T}\right)_p \end{align} This is what is called the heat capacity, which is the amount of energy needed to change the temperature by a given amount. The \(p\) subscript means that your measurement was made at constant pressure. This heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the resistor and thermometer.
      3. Specific heat From your plot of \(C_p(T)\), work out the heat capacity per unit mass of water. You may assume the effect of the resistor and thermometer are negligible. How does your answer compare with the prediction of the Dulong-Petit law?
      4. Latent heat of fusion What did the temperature do while the ice was melting? How much energy was required to melt the ice in your calorimeter? How much energy was required per unit mass? per molecule?
      5. Entropy of fusion The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting of ice), it is just \begin{align} \Delta S &= \frac{Q}{T} \end{align} where \(Q\) is the energy thermally added to the system and \(T\) is the temperature in Kelvin. What is was change in the entropy of the ice you melted? What was the change in entropy per molecule? What was the change in entropy per molecule divided by Boltzmann's constant?
      6. Entropy for a temperature change Choose two temperatures that your water reached (after the ice melted), and find the change in the entropy of your water. This change is given by \begin{align} \Delta S &= \int \frac{{\mathit{\unicode{273}}} Q}{T} \\ &= \int_{t_i}^{t_f} \frac{P(t)}{T(t)}dt \end{align} where \(P(t)\) is the heater power as a function of time and \(T(t)\) is the temperature, also as a function of time.
    • biotech Microwave oven Ice Calorimetry Lab

      biotech Experiment

      60 min.

      Microwave oven Ice Calorimetry Lab
      Energy and Entropy 2021 (2 years)

      heat entropy water ice thermodynamics

      In this remote-friendly activity, students use a microwave oven (and optionally a thermometer) to measure the latent heat of melting for water (and optionally the heat capacity). From these they compute changes in entropy. See also Ice Calorimetry Lab.
    • assignment Derivatives from Data (NIST)

      assignment Homework

      Derivatives from Data (NIST)
      Energy and Entropy 2021 (2 years) Use the NIST web site “Thermophysical Properties of Fluid Systems” to answer the following questions. This site is an excellent resource for finding experimentally measured properties of fluids.
      1. Find the partial derivatives \[\left(\frac{\partial {S}}{\partial {T}}\right)_{p}\] \[\left(\frac{\partial {S}}{\partial {T}}\right)_{V}\] where \(p\) is the pressure, \(V\) is the volume, \(S\) is the entropy, and \(T\) is the temperature. Please find these derivatives for one gram of methanol at one atmosphere of pressure and at room temperature.
      2. Why does it take only two variables to define the state?
      3. Why are the derivatives above different?
      4. What do the words isobaric, isothermal, and isochoric mean?
    • group Ice Calorimetry Lab

      group Small Group Activity

      60 min.

      Ice Calorimetry Lab

      heat entropy water ice

      The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply, from which they compute changes in entropy.
    • assignment Using Gibbs Free Energy

      assignment Homework

      Using Gibbs Free Energy
      thermodynamics entropy heat capacity internal energy equation of state Energy and Entropy 2021 (2 years)

      You are given the following Gibbs free energy: \begin{equation*} G=-k T N \ln \left(\frac{a T^{5 / 2}}{p}\right) \end{equation*} where \(a\) is a constant (whose dimensions make the argument of the logarithm dimensionless).

      1. Compute the entropy.

      2. Work out the heat capacity at constant pressure \(C_p\).

      3. Find the connection among \(V\), \(p\), \(N\), and \(T\), which is called the equation of state (Hint: find the volume as a partial derivative of the Gibbs free energy).

      4. Compute the internal energy \(U\).

    • assignment Isothermal/Adiabatic Compressibility

      assignment Homework

      Isothermal/Adiabatic Compressibility
      Energy and Entropy 2021 (2 years)

      The isothermal compressibility is defined as \begin{equation} K_{T}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} \end{equation} \(K_T\) is be found by measuring the fractional change in volume when the the pressure is slightly changed with the temperature held constant. In contrast, the adiabatic compressibility is defined as \begin{equation} K_{S}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{S} \end{equation} and is measured by making a slight change in pressure without allowing for any heat transfer. This is the compressibility, for instance, that would directly affect the speed of sound. Show that \begin{equation} \frac{K_{T}}{K_{S}} = \frac{C_{p}}{C_{V}} \end{equation} Where the heat capacities at constant pressure and volume are given by \begin{align} C_{p} &= T \left(\frac{\partial S}{\partial T}\right)_{p} \\ C_{V} &= T \left(\frac{\partial S}{\partial T}\right)_{V} \end{align}

    • assignment Bottle in a Bottle 2

      assignment Homework

      Bottle in a Bottle 2
      heat entropy ideal gas Energy and Entropy 2021 (2 years)

      Consider the bottle in a bottle problem in a previous problem set, summarized here.

      A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.

      The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).

      1. How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

      2. Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

      3. Discuss your results.

  • Energy and Entropy 2021 (2 years)

    It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.

    1. What is the maximum possible efficiency of an engine operating between these two temperatures?

    2. If the engine is to produce 1 GW of electrical power, what minimum volume of water must be processed every second? Note that the specific heat capacity of water \(c_p = 4.2\) Jg\(^{-1}\)K\(^{-1}\) and the density of water is 1 g cm\(^{-3}\), and both are roughly constant over this temperature range.