Approximating a Delta Function with Isoceles Triangles

  • Static Fields 2022 (4 years)

    Remember that the delta function is defined so that \[ \delta(x-a)= \begin{cases} 0, &x\ne a\\ \infty, & x=a \end{cases} \]

    Also: \[\int_{-\infty}^{\infty} \delta(x-a)\, dx =1\].

    1. Find a set of functions that approximate the delta function \(\delta(x-a)\) with a sequence of isosceles triangles \(\delta_{\epsilon}(x-a)\), centered at \(a\), that get narrower and taller as the parameter \(\epsilon\) approaches zero.
    2. Using the test function \(f(x)=3x^2\), find the value of \[\int_{-\infty}^{\infty} f(x)\delta_{\epsilon}(x-a)\, dx\] Then, show that the integral approaches \(f(a)\) in the limit that \(\epsilon \rightarrow 0\).