Power Plant on a River

  • efficiency heat engine carnot
    • assignment Power from the Ocean

      assignment Homework

      Power from the Ocean
      heat engine efficiency Energy and Entropy 2021 (2 years)

      It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.

      1. What is the maximum possible efficiency of an engine operating between these two temperatures?

      2. If the engine is to produce 1 GW of electrical power, what minimum volume of water must be processed every second? Note that the specific heat capacity of water \(c_p = 4.2\) Jg\(^{-1}\)K\(^{-1}\) and the density of water is 1 g cm\(^{-3}\), and both are roughly constant over this temperature range.

    • assignment Active transport

      assignment Homework

      Active transport
      Active transport Concentration Chemical potential Thermal and Statistical Physics 2020

      The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?

      David adds
      You might wonder why it is even remotely plausible to consider the ions in solution as an ideal gas. The key idea here is that the ideal gas entropy incorporates the entropy due to position dependence, and thus due to concentration. Since concentration is what differs between the cell and the pond, the ideal gas entropy describes this pretty effectively. In contrast to the concentration dependence, the temperature-dependence of the ideal gas chemical potential will not be so great.

    • assignment Derivative of Fermi-Dirac function

      assignment Homework

      Derivative of Fermi-Dirac function
      Fermi-Dirac function Thermal and Statistical Physics 2020 Derivative of Fermi-Dirac function Show that the magnitude of the slope of the Fermi-Direc function \(f\) evaluated at the Fermi level \(\varepsilon =\mu\) is inversely proportional to its temperature. This means that at lower temperatures the Fermi-Dirac function becomes dramatically steeper.
    • face Work, Heat, and cycles

      face Lecture

      120 min.

      Work, Heat, and cycles
      Thermal and Statistical Physics 2020

      work heat engines Carnot thermodynamics entropy

      These lecture notes covering week 8 of Thermal and Statistical Physics include a small group activity in which students derive the Carnot efficiency.
    • face Energy and Entropy review

      face Lecture

      5 min.

      Energy and Entropy review
      Thermal and Statistical Physics 2020 (3 years)

      thermodynamics statistical mechanics

      This very quick lecture reviews the content taught in Energy and Entropy, and is the first content in Thermal and Statistical Physics.
    • group Heat and Temperature of Water Vapor

      group Small Group Activity

      30 min.

      Heat and Temperature of Water Vapor

      Thermo Heat Capacity Partial Derivatives

      In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.
    • face Phase transformations

      face Lecture

      120 min.

      Phase transformations
      Thermal and Statistical Physics 2020

      phase transformation Clausius-Clapeyron mean field theory thermodynamics

      These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.
  • Energy and Entropy 2021 (2 years)

    At a power plant that produces 1 GW (\(10^{9} \text{watts}\)) of electricity, the steam turbines take in steam at a temperature of \(500^{o}C\), and the waste energy is expelled into the environment at \(20^{o}C\).

    1. What is the maximum possible efficiency of this plant?

    2. Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at \(15^oC\). Roughly how much money can you make in a year by installing your improved hardware, if you sell the additional electricity for 10 cents per kilowatt-hour?

    3. At what rate will the plant expel waste energy into this river?

    4. Assume the river's flow rate is 100 m\(^{3}/\)s. By how much will the temperature of the river increase?

    5. To avoid this “thermal pollution” of the river the plant could instead be cooled by evaporation of river water. This is more expensive, but it is environmentally preferable. At what rate must the water evaporate? What fraction of the river must be evaporated?