Spherical Shell Step Functions

  • step function charge density
    • assignment Total Charge

      assignment Homework

      Total Charge
      charge density curvilinear coordinates

      Integration Sequence

      Static Fields 2023 (6 years)

      For each case below, find the total charge.

      1. A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \begin{equation} \rho(\vec{r})=3\alpha\, e^{(kr)^3} \end{equation}
      2. A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \begin{equation} \rho(\vec{r})=\alpha\, \frac{1}{s}\, e^{ks} \end{equation}

    • assignment Electric Field and Charge

      assignment Homework

      Electric Field and Charge
      divergence charge density Maxwell's equations electric field Static Fields 2023 (4 years) Consider the electric field \begin{equation} \vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases} \end{equation}
      1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
      2. Find a formula for the charge density that creates this electric field.
      3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.
    • assignment Gravitational Field and Mass

      assignment Homework

      Gravitational Field and Mass
      Static Fields 2023 (5 years)

      The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}

      This problem explores the consequences of the divergence theorem for this shell.

      1. Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: \(r<a\), \(a<r<b\), and \(r>b\).
      2. Briefly discuss the physical meaning of the divergence in this particular example.
      3. For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius \(Q\), where \(a<Q<b\). ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
      4. Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.

    • assignment Total Current, Square Cross-Section

      assignment Homework

      Total Current, Square Cross-Section

      Integration Sequence

      Static Fields 2023 (6 years)
      1. Current \(I\) flows down a wire with square cross-section. The length of the square side is \(L\). If the current is uniformly distributed over the entire area, find the current density .
      2. If the current is uniformly distributed over the outer surface only, find the current density .
    • assignment Magnetic Field and Current

      assignment Homework

      Magnetic Field and Current
      Static Fields 2023 (4 years) Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
      1. Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
      2. Find a formula for the current density that creates this magnetic field.
      3. Interpret your formula for the current density, i.e. explain briefly in words where the current is.
    • assignment Volume Charge Density, Version 2

      assignment Homework

      Volume Charge Density, Version 2
      charge density delta function Static Fields 2023 (6 years)

      You have a charge distribution on the \(x\)-axis composed of two point charges: one with charge \(+3q\) located at \(x=-d\) and the other with charge \(-q\) located at \(x=+d\).

      1. Sketch the charge distribution.
      2. Write an expression for the volume charge density \(\rho (\vec{r})\) everywhere in space.

    • assignment Theta Parameters

      assignment Homework

      Theta Parameters
      Static Fields 2023 (6 years)

      The function \(\theta(x)\) (the Heaviside or unit step function) is a defined as: \begin{equation} \theta(x) =\begin{cases} 1 & \textrm{for}\; x>0 \\ 0 & \textrm{for}\; x<0 \end{cases} \end{equation} This function is discontinuous at \(x=0\) and is generally taken to have a value of \(\theta(0)=1/2\).

      Make sketches of the following functions, by hand, on axes with the same scale and domain. Briefly describe, using good scientific writing that includes both words and equations, the role that the number two plays in the shape of each graph: \begin{align} y &= \theta (x)\\ y &= 2+\theta (x)\\ y &= \theta(2+x)\\ y &= 2\theta (x)\\ y &= \theta (2x) \end{align}

    • assignment Volume Charge Density

      assignment Homework

      Volume Charge Density
      Static Fields 2023 (6 years)

      Sketch the volume charge density: \begin{equation} \rho (x,y,z)=c\,\delta (x-3) \end{equation}

    • accessibility_new Acting Out Charge Densities

      accessibility_new Kinesthetic

      10 min.

      Acting Out Charge Densities
      Static Fields 2023 (6 years)

      density charge density mass density linear density uniform idealization

      Integration Sequence

      Ring Cycle Sequence

      Students, pretending they are point charges, move around the room acting out various prompts from the instructor regarding charge densities, including linear \(\lambda\), surface \(\sigma\), and volume \(\rho\) charge densities, both uniform and non-uniform. The instructor demonstrates what it means to measure these quantities. In a remote setting, we have students manipulate 10 coins to model the prompts in this activity and the we demonstrate the answers with coins under a doc cam.
    • group Proportional Reasoning

      group Small Group Activity

      10 min.

      Proportional Reasoning
      Static Fields 2023 (3 years) In this small group activity, students calculate a (linear) function to represent the charge density on a one-dimensional rod from a description of the charge density in words.
  • Static Fields 2023 (6 years)

    One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. If you need to review this, see the following link in the math-physics book: https://paradigms.oregonstate.eduhttps://books.physics.oregonstate.edu/GMM/step.html

    Consider a spherical shell with charge density \(\rho (\vec{r})=\alpha3e^{(k r)^3}\) between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else. Use step functions to write this charge density as a single function valid everywhere in space.