Free energy of a two state system

  • Helmholtz free energy entropy statistical mechanics
    • assignment Free energy of a harmonic oscillator

      assignment Homework

      Free energy of a harmonic oscillator
      Helmholtz free energy harmonic oscillator Thermal and Statistical Physics 2020

      A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.

      1. Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).

      2. From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}

        Entropy of a simple harmonic oscillator
        Heat capacity of a simple harmonic oscillator
        This entropy is shown in the nearby figure, as well as the heat capacity.

    • assignment Quantum harmonic oscillator

      assignment Homework

      Quantum harmonic oscillator
      Entropy Quantum harmonic oscillator Frequency Energy Thermal and Statistical Physics 2020
      1. Find the entropy of a set of \(N\) oscillators of frequency \(\omega\) as a function of the total quantum number \(n\). Use the multiplicity function: \begin{equation} g(N,n) = \frac{(N+n-1)!}{n!(N-1)!} \end{equation} and assume that \(N\gg 1\). This means you can make the Sitrling approximation that \(\log N! \approx N\log N - N\). It also means that \(N-1 \approx N\).

      2. Let \(U\) denote the total energy \(n\hbar\omega\) of the oscillators. Express the entropy as \(S(U,N)\). Show that the total energy at temperature \(T\) is \begin{equation} U = \frac{N\hbar\omega}{e^{\frac{\hbar\omega}{kT}}-1} \end{equation} This is the Planck result found the hard way. We will get to the easy way soon, and you will never again need to work with a multiplicity function like this.

    • assignment One-dimensional gas

      assignment Homework

      One-dimensional gas
      Ideal gas Entropy Tempurature Thermal and Statistical Physics 2020 Consider an ideal gas of \(N\) particles, each of mass \(M\), confined to a one-dimensional line of length \(L\). The particles have spin zero (so you can ignore spin) and do not interact with one another. Find the entropy at temperature \(T\). You may assume that the temperature is high enough that \(k_B T\) is much greater than the ground state energy of one particle.
    • assignment Pressure and entropy of a degenerate Fermi gas

      assignment Homework

      Pressure and entropy of a degenerate Fermi gas
      Fermi gas Pressure Entropy Thermal and Statistical Physics 2020
      1. Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).

      2. Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).

    • assignment Radiation in an empty box

      assignment Homework

      Radiation in an empty box
      Thermal physics Radiation Free energy Thermal and Statistical Physics 2020

      As discussed in class, we can consider a black body as a large box with a small hole in it. If we treat the large box a metal cube with side length \(L\) and metal walls, the frequency of each normal mode will be given by: \begin{align} \omega_{n_xn_yn_z} &= \frac{\pi c}{L}\sqrt{n_x^2 + n_y^2 + n_z^2} \end{align} where each of \(n_x\), \(n_y\), and \(n_z\) will have positive integer values. This simply comes from the fact that a half wavelength must fit in the box. There is an additional quantum number for polarization, which has two possible values, but does not affect the frequency. Note that in this problem I'm using different boundary conditions from what I use in class. It is worth learning to work with either set of quantum numbers. Each normal mode is a harmonic oscillator, with energy eigenstates \(E_n = n\hbar\omega\) where we will not include the zero-point energy \(\frac12\hbar\omega\), since that energy cannot be extracted from the box. (See the Casimir effect for an example where the zero point energy of photon modes does have an effect.)

      Note
      This is a slight approximation, as the boundary conditions for light are a bit more complicated. However, for large \(n\) values this gives the correct result.

      1. Show that the free energy is given by \begin{align} F &= 8\pi \frac{V(kT)^4}{h^3c^3} \int_0^\infty \ln\left(1-e^{-\xi}\right)\xi^2d\xi \\ &= -\frac{8\pi^5}{45} \frac{V(kT)^4}{h^3c^3} \\ &= -\frac{\pi^2}{45} \frac{V(kT)^4}{\hbar^3c^3} \end{align} provided the box is big enough that \(\frac{\hbar c}{LkT}\ll 1\). Note that you may end up with a slightly different dimensionless integral that numerically evaluates to the same result, which would be fine. I also do not expect you to solve this definite integral analytically, a numerical confirmation is fine. However, you must manipulate your integral until it is dimensionless and has all the dimensionful quantities removed from it!

      2. Show that the entropy of this box full of photons at temperature \(T\) is \begin{align} S &= \frac{32\pi^5}{45} k V \left(\frac{kT}{hc}\right)^3 \\ &= \frac{4\pi^2}{45} k V \left(\frac{kT}{\hbar c}\right)^3 \end{align}

      3. Show that the internal energy of this box full of photons at temperature \(T\) is \begin{align} \frac{U}{V} &= \frac{8\pi^5}{15}\frac{(kT)^4}{h^3c^3} \\ &= \frac{\pi^2}{15}\frac{(kT)^4}{\hbar^3c^3} \end{align}

    • assignment Gibbs sum for a two level system

      assignment Homework

      Gibbs sum for a two level system
      Gibbs sum Microstate Thermal average energy Thermal and Statistical Physics 2020
      1. Consider a system that may be unoccupied with energy zero, or occupied by one particle in either of two states, one of energy zero and one of energy \(\varepsilon\). Find the Gibbs sum for this system is in terms of the activity \(\lambda\equiv e^{\beta\mu}\). Note that the system can hold a maximum of one particle.

      2. Solve for the thermal average occupancy of the system in terms of \(\lambda\).

      3. Show that the thermal average occupancy of the state at energy \(\varepsilon\) is \begin{align} \langle N(\varepsilon)\rangle = \frac{\lambda e^{-\frac{\varepsilon}{kT}}}{\mathcal{Z}} \end{align}

      4. Find an expression for the thermal average energy of the system.

      5. Allow the possibility that the orbitals at \(0\) and at \(\varepsilon\) may each be occupied each by one particle at the same time; Show that \begin{align} \mathcal{Z} &= 1 + \lambda + \lambda e^{-\frac{\varepsilon}{kT}} + \lambda^2 e^{-\frac{\varepsilon}{kT}} \\ &= (1+\lambda)\left(1+e^{-\frac{\varepsilon}{kT}}\right) \end{align} Because \(\mathcal{Z}\) can be factored as shown, we have in effect two independent systems.

    • assignment Paramagnetism

      assignment Homework

      Paramagnetism
      Energy Temperature Paramagnetism Thermal and Statistical Physics 2020 Find the equilibrium value at temperature \(T\) of the fractional magnetization \begin{equation} \frac{\mu_{tot}}{Nm} \equiv \frac{2\langle s\rangle}{N} \end{equation} of a system of \(N\) spins each of magnetic moment \(m\) in a magnetic field \(B\). The spin excess is \(2s\). The energy of this system is given by \begin{align} U &= -\mu_{tot}B \end{align} where \(\mu_{tot}\) is the total magnetization. Take the entropy as the logarithm of the multiplicity \(g(N,s)\) as given in (1.35 in the text): \begin{equation} S(s) \approx k_B\log g(N,0) - k_B\frac{2s^2}{N} \end{equation} for \(|s|\ll N\), where \(s\) is the spin excess, which is related to the magnetization by \(\mu_{tot} = 2sm\). Hint: Show that in this approximation \begin{equation} S(U) = S_0 - k_B\frac{U^2}{2m^2B^2N}, \end{equation} with \(S_0=k_B\log g(N,0)\). Further, show that \(\frac1{kT} = -\frac{U}{m^2B^2N}\), where \(U\) denotes \(\langle U\rangle\), the thermal average energy.
    • face Boltzmann probabilities and Helmholtz

      face Lecture

      120 min.

      Boltzmann probabilities and Helmholtz
      Thermal and Statistical Physics 2020

      ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics

      These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.
    • assignment Entropy, energy, and enthalpy of van der Waals gas

      assignment Homework

      Entropy, energy, and enthalpy of van der Waals gas
      Van der Waals gas Enthalpy Entropy Thermal and Statistical Physics 2020

      In this entire problem, keep results to first order in the van der Waals correction terms \(a\) and $b.

      1. Show that the entropy of the van der Waals gas is \begin{align} S &= Nk\left\{\ln\left(\frac{n_Q(V-Nb)}{N}\right)+\frac52\right\} \end{align}

      2. Show that the energy is \begin{align} U &= \frac32 NkT - \frac{N^2a}{V} \end{align}

      3. Show that the enthalpy \(H\equiv U+pV\) is \begin{align} H(T,V) &= \frac52NkT + \frac{N^2bkT}{V} - 2\frac{N^2a}{V} \\ H(T,p) &= \frac52NkT + Nbp - \frac{2Nap}{kT} \end{align}

      Effects of High Altitude by Randall Munroe, at xkcd.

    • face Thermal radiation and Planck distribution

      face Lecture

      120 min.

      Thermal radiation and Planck distribution
      Thermal and Statistical Physics 2020

      Planck distribution blackbody radiation photon statistical mechanics

      These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.
  • Thermal and Statistical Physics 2020
    1. Find an expression for the free energy as a function of \(T\) of a system with two states, one at energy 0 and one at energy \(\varepsilon\).

    2. From the free energy, find expressions for the internal energy \(U\) and entropy \(S\) of the system.

    3. Plot the entropy versus \(T\). Explain its asymptotic behavior as the temperature becomes high.

    4. Plot the \(S(T)\) versus \(U(T)\). Explain the maximum value of the energy \(U\).

  • Media & Figures
    • figures/two-state_lePH70M.py
    • figures/two-state-entropy-vs-energy.svg
    • figures/two-state-entropy-vs-temperature.svg