face Lecture
120 min.
Planck distribution blackbody radiation photon statistical mechanics
These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.assignment Homework
Find the entropy of a set of \(N\) oscillators of frequency \(\omega\) as a function of the total quantum number \(n\). Use the multiplicity function: \begin{equation} g(N,n) = \frac{(N+n-1)!}{n!(N-1)!} \end{equation} and assume that \(N\gg 1\). This means you can make the Sitrling approximation that \(\log N! \approx N\log N - N\). It also means that \(N-1 \approx N\).
Let \(U\) denote the total energy \(n\hbar\omega\) of the oscillators. Express the entropy as \(S(U,N)\). Show that the total energy at temperature \(T\) is \begin{equation} U = \frac{N\hbar\omega}{e^{\frac{\hbar\omega}{kT}}-1} \end{equation} This is the Planck result found the hard way. We will get to the easy way soon, and you will never again need to work with a multiplicity function like this.
assignment Homework
As discussed in class, we can consider a black body as a large box with a small hole in it. If we treat the large box a metal cube with side length \(L\) and metal walls, the frequency of each normal mode will be given by: \begin{align} \omega_{n_xn_yn_z} &= \frac{\pi c}{L}\sqrt{n_x^2 + n_y^2 + n_z^2} \end{align} where each of \(n_x\), \(n_y\), and \(n_z\) will have positive integer values. This simply comes from the fact that a half wavelength must fit in the box. There is an additional quantum number for polarization, which has two possible values, but does not affect the frequency. Note that in this problem I'm using different boundary conditions from what I use in class. It is worth learning to work with either set of quantum numbers. Each normal mode is a harmonic oscillator, with energy eigenstates \(E_n = n\hbar\omega\) where we will not include the zero-point energy \(\frac12\hbar\omega\), since that energy cannot be extracted from the box. (See the Casimir effect for an example where the zero point energy of photon modes does have an effect.)
Show that the free energy is given by \begin{align} F &= 8\pi \frac{V(kT)^4}{h^3c^3} \int_0^\infty \ln\left(1-e^{-\xi}\right)\xi^2d\xi \\ &= -\frac{8\pi^5}{45} \frac{V(kT)^4}{h^3c^3} \\ &= -\frac{\pi^2}{45} \frac{V(kT)^4}{\hbar^3c^3} \end{align} provided the box is big enough that \(\frac{\hbar c}{LkT}\ll 1\). Note that you may end up with a slightly different dimensionless integral that numerically evaluates to the same result, which would be fine. I also do not expect you to solve this definite integral analytically, a numerical confirmation is fine. However, you must manipulate your integral until it is dimensionless and has all the dimensionful quantities removed from it!
Show that the entropy of this box full of photons at temperature \(T\) is \begin{align} S &= \frac{32\pi^5}{45} k V \left(\frac{kT}{hc}\right)^3 \\ &= \frac{4\pi^2}{45} k V \left(\frac{kT}{\hbar c}\right)^3 \end{align}
Show that the internal energy of this box full of photons at temperature \(T\) is \begin{align} \frac{U}{V} &= \frac{8\pi^5}{15}\frac{(kT)^4}{h^3c^3} \\ &= \frac{\pi^2}{15}\frac{(kT)^4}{\hbar^3c^3} \end{align}
group Small Group Activity
30 min.
assignment Homework
(modified from K&K 4.6) We discussed in class that \begin{align} p &= -\left(\frac{\partial F}{\partial V}\right)_T \end{align} Use this relationship to show that
\begin{align} p &= -\sum_j \langle n_j\rangle\hbar \left(\frac{d\omega_j}{dV}\right), \end{align} where \(\langle n_j\rangle\) is the number of photons in the mode \(j\);
Solve for the relationship between pressure and internal energy.
assignment Homework
assignment Homework
Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.
Find an expression for the energy \(U\) of the gas.
Find an expression for the entropy \(\sigma\). The temperature is \(kT\).
assignment Homework
Homogeneous, linear ODEs with constant coefficients were likely covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see:
Constant Coefficients, Homogeneous
or your differential equations text.
Answer the following questions for each differential equation below:
assignment Homework
Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).
Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).
A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.
Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).
From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}
This entropy is shown in the nearby figure, as well as the heat capacity.