- bose-einstein gas statistical mechanics
*assignment*Active transport*assignment*Homework##### Active transport

Active transport Concentration Chemical potential Thermal and Statistical Physics 2020The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?

- David adds
- You might wonder why it is even remotely plausible to consider the ions in solution as an ideal gas. The key idea here is that the ideal gas entropy incorporates the entropy due to position dependence, and thus due to concentration. Since concentration is what differs between the cell and the pond, the ideal gas entropy describes this pretty effectively. In contrast to the concentration dependence, the temperature-dependence of the ideal gas chemical potential will not be so great.

*assignment*Centrifuge*assignment*Homework##### Centrifuge

Centrifugal potential Thermal and Statistical Physics 2020 A circular cylinder of radius \(R\) rotates about the long axis with angular velocity \(\omega\). The cylinder contains an ideal gas of atoms of mass \(M\) at temperature \(T\). Find an expression for the dependence of the concentration \(n(r)\) on the radial distance \(r\) from the axis, in terms of \(n(0)\)*on*the axis. Take \(\mu\) as for an ideal gas.*face*Chemical potential and Gibbs distribution*face*Lecture120 min.

##### Chemical potential and Gibbs distribution

Thermal and Statistical Physics 2020chemical potential Gibbs distribution grand canonical ensemble statistical mechanics

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.*assignment*The Path*assignment*Homework##### The Path

Vector Calculus I 2022 You are climbing a hill along the steepest path, whose slope at your current location is \(1\over5\). There is another path branching off at an angle of \(30^\circ\) (\(\pi\over6\)). How steep is it?*group*A glass of water*group*Small Group Activity30 min.

##### A glass of water

Energy and Entropy 2021 (2 years)thermodynamics intensive extensive temperature volume energy entropy

Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.*assignment*Entropy, energy, and enthalpy of van der Waals gas*assignment*Homework##### Entropy, energy, and enthalpy of van der Waals gas

Van der Waals gas Enthalpy Entropy Thermal and Statistical Physics 2020In this entire problem, keep results to first order in the van der Waals correction terms \(a\) and $b.

Show that the entropy of the van der Waals gas is \begin{align} S &= Nk\left\{\ln\left(\frac{n_Q(V-Nb)}{N}\right)+\frac52\right\} \end{align}

Show that the energy is \begin{align} U &= \frac32 NkT - \frac{N^2a}{V} \end{align}

Show that the enthalpy \(H\equiv U+pV\) is \begin{align} H(T,V) &= \frac52NkT + \frac{N^2bkT}{V} - 2\frac{N^2a}{V} \\ H(T,p) &= \frac52NkT + Nbp - \frac{2Nap}{kT} \end{align}

*assignment*Ideal gas calculations*assignment*Homework##### Ideal gas calculations

Ideal gas Entropy Sackur-Tetrode Thermal and Statistical Physics 2020Consider one mole of an ideal monatomic gas at 300K and 1 atm. First, let the gas expand isothermally and reversibly to twice the initial volume; second, let this be followed by an isentropic expansion from twice to four times the original volume.

How much heat (in joules) is added to the gas in each of these two processes?

What is the temperature at the end of the second process?

Suppose the first process is replaced by an irreversible expansion into a vacuum, to a total volume twice the initial volume. What is the increase of entropy in the irreversible expansion, in J/K?

*face*Ideal Gas*face*Lecture120 min.

##### Ideal Gas

Thermal and Statistical Physics 2020ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.*face*Boltzmann probabilities and Helmholtz*face*Lecture120 min.

##### Boltzmann probabilities and Helmholtz

Thermal and Statistical Physics 2020ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics

These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.*face*Work, Heat, and cycles*face*Lecture120 min.

##### Work, Heat, and cycles

Thermal and Statistical Physics 2020work heat engines Carnot thermodynamics entropy

These lecture notes covering week 8 of Thermal and Statistical Physics include a small group activity in which students derive the Carnot efficiency.- Thermal and Statistical Physics 2020 Consider one particle confined to a cube of side \(L\); the concentration in effect is \(n=L^{-3}\). Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature \(kT\). (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration \(n_0\) thus defined is equal to the quantum concentration \(n_Q\) defined by (63): \begin{equation} n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32} \end{equation} within a factor of the order of unity.