assignment Homework
The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?
assignment Homework
face Lecture
120 min.
chemical potential Gibbs distribution grand canonical ensemble statistical mechanics
These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.assignment Homework
group Small Group Activity
30 min.
thermodynamics intensive extensive temperature volume energy entropy
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.assignment Homework
In this entire problem, keep results to first order in the van der Waals correction terms \(a\) and $b.
Show that the entropy of the van der Waals gas is \begin{align} S &= Nk\left\{\ln\left(\frac{n_Q(V-Nb)}{N}\right)+\frac52\right\} \end{align}
Show that the energy is \begin{align} U &= \frac32 NkT - \frac{N^2a}{V} \end{align}
Show that the enthalpy \(H\equiv U+pV\) is \begin{align} H(T,V) &= \frac52NkT + \frac{N^2bkT}{V} - 2\frac{N^2a}{V} \\ H(T,p) &= \frac52NkT + Nbp - \frac{2Nap}{kT} \end{align}
assignment Homework
Consider one mole of an ideal monatomic gas at 300K and 1 atm. First, let the gas expand isothermally and reversibly to twice the initial volume; second, let this be followed by an isentropic expansion from twice to four times the original volume.
How much heat (in joules) is added to the gas in each of these two processes?
What is the temperature at the end of the second process?
Suppose the first process is replaced by an irreversible expansion into a vacuum, to a total volume twice the initial volume. What is the increase of entropy in the irreversible expansion, in J/K?
face Lecture
120 min.
ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics
These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.face Lecture
120 min.
ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics
These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.face Lecture
120 min.
work heat engines Carnot thermodynamics entropy
These lecture notes covering week 8 of Thermal and Statistical Physics include a small group activity in which students derive the Carnot efficiency.