assignment Homework
The general equation for a straight line in polar coordinates is given by: \begin{equation} r(\phi)=\frac{r_0}{\cos(\phi-\delta)} \end{equation} where \(r_0\) and \(\delta\) are constant parameters. Find the polar equation for the straight lines below. You do NOT need to evaluate any complicated trig or inverse trig functions. You may want to try plotting the general polar equation to figure out the roles of the parameters.
assignment Homework
Shown below is a contour plot of a scalar field, \(\mu(x,y)\). Assume that \(x\)
and \(y\) are measured in meters and that \(\mu\) is measured in kilograms.
Four points are indicated on the plot.
group Small Group Activity
30 min.
accessibility_new Kinesthetic
10 min.
assignment Homework
Using your favorite graphing package, make a plot of the reduced mass \begin{equation} \mu=\frac{m_1\, m_2}{m_1+m_2} \end{equation} as a function of \(m_1\) and \(m_2\). What about the shape of this graph tells you something about the physical world that you would like to remember. You should be able to find at least three things. Hint: Think limiting cases.
group Small Group Activity
30 min.
assignment Homework
Which pairs of events (if any) are simultaneous in the unprimed frame?
Which pairs of events (if any) are simultaneous in the primed frame?
Which pairs of events (if any) are colocated in the unprimed frame?
Which pairs of events (if any) are colocated in the primed frame?
Which event occurs first in the unprimed frame?
Which event occurs first in the primed frame?
group Small Group Activity
5 min.
Special Relativity Spacetime Diagrams Simultaneity Colocation
Students practice identifying whether events on spacetime diagrams are simultaneous, colocated, or neither for different observers. Then students decide which of two events occurs first in two different reference frames.assignment Homework
Shown above is a two-dimensional vector field.
Determine whether the divergence at point A and at point C is positive, negative, or zero.
group Small Group Activity
30 min.
Consider the diagram of \(T\) vs \(V\) for several different constant values of \(p\).
Translate this diagram to a \(p\) vs \(V\) w/ constant \(T\) graph, including the point \(A\). Complete your graph by hand and make a fairly accurate sketch by printing out the attached grid or in some other way making nice square axes with appropriate tick marks.
Are the lines that you drew straight or curved? What feature of the \(TV\) graph would have to change to change this result?
Sketch the line of constant temperature that passes through the point \(A\).