assignment Homework
group Small Group Activity
30 min.
compare and contrast mathematica magnetic vector potential magnetic fields vector field symmetry
Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
group Small Group Activity
30 min.
magnetic fields current Biot-Savart law vector field symmetry
Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
assignment Homework
Start with \(d\vec{r}\) in rectangular, cylindrical, and spherical coordinates. Use these expressions to write the scalar area elements \(dA\) (for different coordinate equals constant surfaces) and the volume element \(d\tau\). It might help you to think of the following surfaces: The various sides of a rectangular box, a finite cylinder with a top and a bottom, a half cylinder, and a hemisphere with both a curved and a flat side, and a cone.
group Small Group Activity
30 min.
Students use known algebraic expressions for vector line elements \(d\vec{r}\) to determine all simple vector area \(d\vec{A}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
group Small Group Activity
30 min.
Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.
assignment Homework
accessibility_new Kinesthetic
10 min.
assignment Homework
A current \(I\) flows down a cylindrical wire of radius \(R\).
assignment Homework
Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.
You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.
Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.