assignment Homework
group Small Group Activity
60 min.
assignment Homework
Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.
You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.
Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.
group Small Group Activity
30 min.
assignment Homework
group Small Group Activity
30 min.
charge charge density multiple integral scalar field coordinate systems differential elements curvilinear coordinates
In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.computer Computer Simulation
30 min.
Taylor series power series approximation
Students use prepared Sage code or a prepared Mathematica notebook to plot \(\sin\theta\) simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.group Small Group Activity
30 min.
coulomb's law electric field charge ring symmetry integral power series superposition
Students work in groups of three to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.
In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Task: Draw a right triangle. Put a circle around the right angle, that is, the angle that is \(\frac\pi2\) radians.
Preparing your submission:
Using Gradescope: We will arrange for you to have a Gradescope account, after which you should receive access instructions directly from them. To submit an assignment: