assignment Homework
assignment Homework
Start with \(d\vec{r}\) in rectangular, cylindrical, and spherical coordinates. Use these expressions to write the scalar area elements \(dA\) (for different coordinate equals constant surfaces) and the volume element \(d\tau\). It might help you to think of the following surfaces: The various sides of a rectangular box, a finite cylinder with a top and a bottom, a half cylinder, and a hemisphere with both a curved and a flat side, and a cone.
group Small Group Activity
30 min.
Students use known algebraic expressions for vector line elements \(d\vec{r}\) to determine all simple vector area \(d\vec{A}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
assignment Homework
assignment Homework
groups Whole Class Activity
10 min.
There are two versions of this activity:
As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.
As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distribued to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.
assignment Homework
Use integration to find the total mass of the icecream in a packed cone (both the cone and the hemisphere of icecream on top).
assignment Homework
A helix with 17 turns has height \(H\) and radius \(R\). Charge is distributed on the helix so that the charge density increases like (i.e. proportional to) the square of the distance up the helix. At the bottom of the helix the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the top of the helix, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the helix?
group Small Group Activity
30 min.
Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.
assignment Homework
Consider the finite line with a uniform charge density from class.