assignment Homework
The internal energy of helium gas at temperature \(T\) is
to a very good approximation given by
\begin{align}
U &= \frac32 Nk_BT
\end{align}
assignment Homework
You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.
assignment Homework
The internal energy is of any ideal gas can be written as \begin{align} U &= U(T,N) \end{align} meaning that the internal energy depends only on the number of particles and the temperature, but not the volume.* The ideal gas law \begin{align} pV &= Nk_BT \end{align} defines the relationship between \(p\), \(V\) and \(T\). You may take the number of molecules \(N\) to be constant. Consider the free adiabatic expansion of an ideal gas to twice its volume. “Free expansion” means that no work is done, but also that the process is also neither quasistatic nor reversible.
What is the change in entropy of the gas? How do you know this?
grading Quiz
60 min.
face Lecture
120 min.
work heat engines Carnot thermodynamics entropy
These lecture notes covering week 8 of Thermal and Statistical Physics include a small group activity in which students derive the Carnot efficiency.group Small Group Activity
120 min.
Projectile Motion Drag Forces Newton's 2nd Law Separable Differential Equations
Students consider projectile motion of an object that experiences drag force that in linear with the velocity. Students consider the horizontal motion and the vertical motion separately. Students solve Newton's 2nd law as a differential equation.group Small Group Activity
30 min.
assignment Homework
Use integration to find the total mass of the icecream in a packed cone (both the cone and the hemisphere of icecream on top).
group Small Group Activity
30 min.
assignment Homework
Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.
Consider the bottle in a bottle problem in a previous problem set, summarized here.
The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).
How many molecules of gas does the large bottle contain? What is the final temperature of the gas?
Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).