group Small Group Activity
30 min.
group Small Group Activity
60 min.
Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics
Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.group Small Group Activity
30 min.
Mechanics Gravitational Force Gravitational Potential Energy Derivatives Introductory Physics
Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.group Small Group Activity
30 min.
assignment Homework
In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:
assignment Homework
Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.
Make a sketch of the graph \begin{equation} \vert \vec{r} - \vec{a} \vert = 2 \end{equation}
for each of the following values of \(\vec a\): \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}
assignment Homework
Consider a very light particle of mass \(\mu\) scattering from a very
heavy, stationary particle of mass \(M\). The force between the two
particles is a repulsive Coulomb force \(\frac{k}{r^2}\). The
impact parameter \(b\) in a scattering problem is defined to be the
distance which would be the closest approach if there were no
interaction (See Figure). The initial velocity (far from the
scattering event) of the mass \(\mu\) is \(\vec v_0\). Answer the
following questions about this situation in terms of \(k\), \(M\),
\(\mu\), \(\vec v_0\), and \(b\). ()It is not necessarily wise to answer
these questions in order.)
computer Computer Simulation
30 min.
group Small Group Activity
30 min.
assignment Homework
You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.