assignment Homework
face Lecture
30 min.
thermodynamics statistical mechanics
These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.assignment Homework
In our week on radiation, we saw that the Helmholtz free energy of a box of radiation at temperature \(T\) is \begin{align} F &= -8\pi \frac{V(kT)^4}{h^3c^3}\frac{\pi^4}{45} \end{align} From this we also found the internal energy and entropy \begin{align} U &= 24\pi \frac{(kT)^4}{h^3c^3}\frac{\pi^4}{45} V \\ S &= 32\pi kV\left(\frac{kT}{hc}\right)^3 \frac{\pi^4}{45} \end{align} Given these results, let us consider a Carnot engine that uses an empty metalic piston (i.e. a photon gas).
Given \(T_H\) and \(T_C\), as well as \(V_1\) and \(V_2\) (the two volumes at \(T_H\)), determine \(V_3\) and \(V_4\) (the two volumes at \(T_C\)).
What is the heat \(Q_H\) taken up and the work done by the gas during the first isothermal expansion? Are they equal to each other, as for the ideal gas?
Does the work done on the two isentropic stages cancel each other, as for the ideal gas?
Calculate the total work done by the gas during one cycle. Compare it with the heat taken up at \(T_H\) and show that the energy conversion efficiency is the Carnot efficiency.
assignment Homework
assignment Homework
Show that for a reversible heat pump the energy required per unit of heat delivered inside the building is given by the Carnot efficiency: \begin{align} \frac{W}{Q_H} &= \eta_C = \frac{T_H-T_C}{T_H} \end{align} What happens if the heat pump is not reversible?
Assume that the electricity consumed by a reversible heat pump must itself be generated by a Carnot engine operating between the even hotter temperature \(T_{HH}\) and the cold (outdoors) temperature \(T_C\). What is the ratio \(\frac{Q_{HH}}{Q_H}\) of the heat consumed at \(T_{HH}\) (i.e. fuel burned) to the heat delivered at \(T_H\) (in the house we want to heat)? Give numerical values for \(T_{HH}=600\text{K}\); \(T_{H}=300\text{K}\); \(T_{C}=270\text{K}\).
Draw an energy-entropy flow diagram for the combination heat engine-heat pump, similar to Figures 8.1, 8.2 and 8.4 in the text (or the equivalent but sloppier) figures in the course notes. However, in this case we will involve no external work at all, only energy and entropy flows at three temperatures, since the work done is all generated from heat.
face Lecture
120 min.
work heat engines Carnot thermodynamics entropy
These lecture notes covering week 8 of Thermal and Statistical Physics include a small group activity in which students derive the Carnot efficiency.assignment Homework
Consider a hanging rectangular rubber sheet. We will consider there to be two ways to get energy into or out of this sheet: you can either stretch it vertically or horizontally. The distance of vertical stretch we will call \(y\), and the distance of horizontal stretch we will call \(x\).
If I pull the bottom down by a small distance \(\Delta y\), with no horizontal force, what is the resulting change in width \(\Delta x\)? Express your answer in terms of partial derivatives of the potential energy \(U(x,y)\).
face Lecture
10 min.
assignment Homework
At a power plant that produces 1 GW (\(10^{9} \text{watts}\)) of electricity, the steam turbines take in steam at a temperature of \(500^{o}C\), and the waste energy is expelled into the environment at \(20^{o}C\).
What is the maximum possible efficiency of this plant?
Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at \(15^oC\). Roughly how much money can you make in a year by installing your improved hardware, if you sell the additional electricity for 10 cents per kilowatt-hour?
At what rate will the plant expel waste energy into this river?
Assume the river's flow rate is 100 m\(^{3}/\)s. By how much will the temperature of the river increase?
assignment Homework
It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.
What is the maximum possible efficiency of an engine operating between these two temperatures?
Solve for the net power transferred between the two sheets.
Optional: Find the power through an \(N\)-layer sandwich.