## Active transport

• Active transport Concentration Chemical potential
• assignment Centrifuge

assignment Homework

##### Centrifuge
Centrifugal potential Thermal and Statistical Physics 2020 A circular cylinder of radius $R$ rotates about the long axis with angular velocity $\omega$. The cylinder contains an ideal gas of atoms of mass $M$ at temperature $T$. Find an expression for the dependence of the concentration $n(r)$ on the radial distance $r$ from the axis, in terms of $n(0)$ on the axis. Take $\mu$ as for an ideal gas.
• face Chemical potential and Gibbs distribution

face Lecture

120 min.

##### Chemical potential and Gibbs distribution
Thermal and Statistical Physics 2020

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.
• group A glass of water

group Small Group Activity

30 min.

##### A glass of water
Energy and Entropy 2021 (2 years)

Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.
• assignment Potential energy of gas in gravitational field

assignment Homework

##### Potential energy of gas in gravitational field
Potential energy Heat capacity Thermal and Statistical Physics 2020 Consider a column of atoms each of mass $M$ at temperature $T$ in a uniform gravitational field $g$. Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom $h=0$ of the column. Integrate from $h=0$ to $h=\infty$. You may assume the gas is ideal.
• assignment Contours

assignment Homework

##### Contours

Static Fields 2023 (6 years)

Shown below is a contour plot of a scalar field, $\mu(x,y)$. Assume that $x$ and $y$ are measured in meters and that $\mu$ is measured in kilograms. Four points are indicated on the plot.

1. Determine $\frac{\partial\mu}{\partial x}$ and $\frac{\partial\mu}{\partial y}$ at each of the four points.
2. On a printout of the figure, draw a qualitatively accurate vector at each point corresponding to the gradient of $\mu(x,y)$ using your answers to part a above. How did you choose a scale for your vectors? Describe how the direction of the gradient vector is related to the contours on the plot and what property of the contour map is related to the magnitude of the gradient vector.
3. Evaluate the gradient of $h(x,y)=(x+1)^2\left(\frac{x}{2}-\frac{y}{3}\right)^3$ at the point $(x,y)=(3,-2)$.

• face Phase transformations

face Lecture

120 min.

##### Phase transformations
Thermal and Statistical Physics 2020

These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.
• assignment Quantum concentration

assignment Homework

##### Quantum concentration
bose-einstein gas statistical mechanics Thermal and Statistical Physics 2020 Consider one particle confined to a cube of side $L$; the concentration in effect is $n=L^{-3}$. Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature $kT$. (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration $n_0$ thus defined is equal to the quantum concentration $n_Q$ defined by (63): $$n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32}$$ within a factor of the order of unity.
• assignment Paramagnetism

assignment Homework

##### Paramagnetism
Energy Temperature Paramagnetism Thermal and Statistical Physics 2020 Find the equilibrium value at temperature $T$ of the fractional magnetization $$\frac{\mu_{tot}}{Nm} \equiv \frac{2\langle s\rangle}{N}$$ of a system of $N$ spins each of magnetic moment $m$ in a magnetic field $B$. The spin excess is $2s$. The energy of this system is given by \begin{align} U &= -\mu_{tot}B \end{align} where $\mu_{tot}$ is the total magnetization. Take the entropy as the logarithm of the multiplicity $g(N,s)$ as given in (1.35 in the text): $$S(s) \approx k_B\log g(N,0) - k_B\frac{2s^2}{N}$$ for $|s|\ll N$, where $s$ is the spin excess, which is related to the magnetization by $\mu_{tot} = 2sm$. Hint: Show that in this approximation $$S(U) = S_0 - k_B\frac{U^2}{2m^2B^2N},$$ with $S_0=k_B\log g(N,0)$. Further, show that $\frac1{kT} = -\frac{U}{m^2B^2N}$, where $U$ denotes $\langle U\rangle$, the thermal average energy.
• assignment Carbon monoxide poisoning

assignment Homework

##### Carbon monoxide poisoning
Equilibrium Absorbtion Thermal and Statistical Physics 2020

In carbon monoxide poisoning the CO replaces the $\textsf{O}_{2}$ adsorbed on hemoglobin ($\text{Hb}$) molecules in the blood. To show the effect, consider a model for which each adsorption site on a heme may be vacant or may be occupied either with energy $\varepsilon_A$ by one molecule $\textsf{O}_{2}$ or with energy $\varepsilon_B$ by one molecule CO. Let $N$ fixed heme sites be in equilibrium with $\textsf{O}_{2}$ and CO in the gas phases at concentrations such that the activities are $\lambda(\text{O}_2) = 1\times 10^{-5}$ and $\lambda(\text{CO}) = 1\times 10^{-7}$, all at body temperature $37^\circ\text{C}$. Neglect any spin multiplicity factors.

1. First consider the system in the absence of CO. Evaluate $\varepsilon_A$ such that 90 percent of the $\text{Hb}$ sites are occupied by $\textsf{O}_{2}$. Express the answer in eV per $\textsf{O}_{2}$.

2. Now admit the CO under the specified conditions. Fine $\varepsilon_B$ such that only 10% of the Hb sites are occupied by $\textsf{O}_{2}$.

• face Entropy and Temperature

face Lecture

120 min.

##### Entropy and Temperature
Thermal and Statistical Physics 2020

These lecture notes for the second week of Thermal and Statistical Physics involve relating entropy and temperature in the microcanonical ensemble, using a paramagnet as an example. These notes include a few small group activities.
• Thermal and Statistical Physics 2020

The concentration of potassium $\text{K}^+$ ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of $10^4$ the concentration of $\text{K}^+$ ions in the pond water in which the cell is growing. The chemical potential of the $\text{K}^+$ ions is higher in the sap because their concentration $n$ is higher there. Estimate the difference in chemical potential at $300\text{K}$ and show that it is equivalent to a voltage of $0.24\text{V}$ across the cell wall. Take $\mu$ as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?