- White dwarf Mass Density Energy
*assignment*Diatomic hydrogen*assignment*Homework##### Diatomic hydrogen

rigid rotor hamiltonian angular momentum ground state hydrogen diatomic probability Energy and Entropy 2021 (2 years)At low temperatures, a diatomic molecule can be well described as a

*rigid rotor*. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.

At room temperature, what is the relative probability of finding a hydrogen molecule in the \(\ell=0\) state versus finding it in any one of the \(\ell=1\) states?

i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)At what temperature is the value of this ratio 1?

- At room temperature, what is the probability of
finding a hydrogen molecule in any one of the \(\ell=2\) states versus
that of finding it in the ground state?

i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)\)

*assignment*Pressure and entropy of a degenerate Fermi gas*assignment*Homework##### Pressure and entropy of a degenerate Fermi gas

Fermi gas Pressure Entropy Thermal and Statistical Physics 2020Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).

Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).

*face*Fermi and Bose gases*face*Lecture120 min.

##### Fermi and Bose gases

Thermal and Statistical Physics 2020Fermi level fermion boson Bose gas Bose-Einstein condensate ideal gas statistical mechanics phase transition

These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.*assignment*Circle Trigonometry*assignment*Homework##### Circle Trigonometry

trigonometry cosine sine math circle Quantum Fundamentals 2022 (2 years)On the following diagrams, mark both \(\theta\) and \(\sin\theta\) for \(\theta_1=\frac{5\pi}{6}\) and \(\theta_2=\frac{7\pi}{6}\). Write one to three sentences about how these two representations are related to each other. (For example, see: this PHET)

*assignment*Calculation of $\frac{dT}{dp}$ for water*assignment*Homework##### Calculation of \(\frac{dT}{dp}\) for water

Clausius-Clapeyron Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.*assignment*Energy of a relativistic Fermi gas*assignment*Homework##### Energy of a relativistic Fermi gas

Fermi gas Relativity Thermal and Statistical Physics 2020For electrons with an energy \(\varepsilon\gg mc^2\), where \(m\) is the mass of the electron, the energy is given by \(\varepsilon\approx pc\) where \(p\) is the momentum. For electrons in a cube of volume \(V=L^3\) the momentum takes the same values as for a non-relativistic particle in a box.

Show that in this extreme relativistic limit the Fermi energy of a gas of \(N\) electrons is given by \begin{align} \varepsilon_F &= \hbar\pi c\left(\frac{3n}{\pi}\right)^{\frac13} \end{align} where \(n\equiv \frac{N}{V}\) is the number density.

Show that the total energy of the ground state of the gas is \begin{align} U_0 &= \frac34 N\varepsilon_F \end{align}

*assignment*Boltzmann probabilities*assignment*Homework##### Boltzmann probabilities

Energy Entropy Boltzmann probabilities Thermal and Statistical Physics 2020 (3 years) Consider a three-state system with energies \((-\epsilon,0,\epsilon)\).- At infinite temperature, what are the probabilities of the three states being occupied? What is the internal energy \(U\)? What is the entropy \(S\)?
- At very low temperature, what are the three probabilities?
- What are the three probabilities at zero temperature? What is the internal energy \(U\)? What is the entropy \(S\)?
- What happens to the probabilities if you allow the temperature to be negative?

*assignment*Pressure of thermal radiation*assignment*Homework##### Pressure of thermal radiation

Thermal radiation Pressure Thermal and Statistical Physics 2020(modified from K&K 4.6) We discussed in class that \begin{align} p &= -\left(\frac{\partial F}{\partial V}\right)_T \end{align} Use this relationship to show that

\begin{align} p &= -\sum_j \langle n_j\rangle\hbar \left(\frac{d\omega_j}{dV}\right), \end{align} where \(\langle n_j\rangle\) is the number of photons in the mode \(j\);

Solve for the relationship between pressure and internal energy.

*face*Entropy and Temperature*face*Lecture120 min.

##### Entropy and Temperature

Thermal and Statistical Physics 2020paramagnet entropy temperature statistical mechanics

These lecture notes for the second week of Thermal and Statistical Physics involve relating entropy and temperature in the microcanonical ensemble, using a paramagnet as an example. These notes include a few small group activities.*face*Gibbs entropy approach*face*Lecture120 min.

##### Gibbs entropy approach

Thermal and Statistical Physics 2020Gibbs entropy information theory probability statistical mechanics

These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.-
Thermal and Statistical Physics 2020
Consider a white dwarf of mass \(M\) and radius \(R\). The dwarf consists of ionized hydrogen, thus a bunch of free electrons and protons, each of which are fermions. Let the electrons be degenerate but nonrelativistic; the protons are nondegenerate.

Show that the order of magnitude of the gravitational self-energy is \(-\frac{GM^2}{R}\), where \(G\) is the gravitational constant. (If the mass density is constant within the sphere of radius \(R\), the exact potential energy is \(-\frac53\frac{GM^2}{R}\)).

Show that the order of magnitude of the kinetic energy of the electrons in the ground state is \begin{align} \frac{\hbar^2N^{\frac53}}{mR^2} \approx \frac{\hbar^2M^{\frac53}}{mM_H^{\frac53}R^2} \end{align} where \(m\) is the mass of an electron and \(M_H\) is the mas of a proton.

Show that if the gravitational and kinetic energies are of the same order of magnitude (as required by the virial theorem of mechanics), \(M^{\frac13}R \approx 10^{20} \text{g}^{\frac13}\text{cm}\).

If the mass is equal to that of the Sun (\(2\times 10^{33}g\)), what is the density of the white dwarf?

It is believed that pulsars are stars composed of a cold degenerate gas of neutrons (i.e. neutron stars). Show that for a neutron star \(M^{\frac13}R \approx 10^{17}\text{g}^{\frac13}\text{cm}\). What is the value of the radius for a neutron star with a mass equal to that of the Sun? Express the result in \(\text{km}\).