Calculation of $\frac{dT}{dp}$ for water

  • Clausius-Clapeyron
    • assignment Vapor pressure equation

      assignment Homework

      Vapor pressure equation
      phase transformation Clausius-Clapeyron Thermal and Statistical Physics 2020 Consider a phase transformation between either solid or liquid and gas. Assume that the volume of the gas is way bigger than that of the liquid or solid, such that \(\Delta V \approx V_g\). Furthermore, assume that the ideal gas law applies to the gas phase. Note: this problem is solved in the textbook, in the section on the Clausius-Clapeyron equation.
      1. Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.

      2. Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).

    • face Phase transformations

      face Lecture

      120 min.

      Phase transformations
      Thermal and Statistical Physics 2020

      phase transformation Clausius-Clapeyron mean field theory thermodynamics

      These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.
    • assignment Heat of vaporization of ice

      assignment Homework

      Heat of vaporization of ice
      Vaporization Heat Thermal and Statistical Physics 2020 The pressure of water vapor over ice is 518 Pa at \(-2^\circ\text{C}\). The vapor pressure of water at its triple point is 611 Pa, at 0.01\(^\circ\text{C}\) (see Estimate in \(\text{J mol}^{-1}\) the heat of vaporization of ice just under freezing. How does this compare with the heat of vaporization of water?
    • face Review of Thermal Physics

      face Lecture

      30 min.

      Review of Thermal Physics
      Thermal and Statistical Physics 2020

      thermodynamics statistical mechanics

      These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.
    • group Heat capacity of N$_2$

      group Small Group Activity

      30 min.

      Heat capacity of N2
      Contemporary Challenges 2022 (4 years)

      equipartition quantum energy levels

      Students sketch the temperature-dependent heat capacity of molecular nitrogen. They apply the equipartition theorem and compute the temperatures at which degrees of freedom “freeze out.”
    • assignment Basic Calculus: Practice Exercises

      assignment Homework

      Basic Calculus: Practice Exercises
      Static Fields 2022 (4 years) Determine the following derivatives and evaluate the following integrals.
      1. \(\frac{d}{du}\left(u^2\sin u\right)\)
      2. \(\frac{d}{dz}\left(\ln(z^2+1)\right)\)
      3. \(\displaystyle\int v\cos(v^2)\,dv\)
      4. \(\displaystyle\int v\cos v\,dv\)
    • assignment Adiabatic Compression

      assignment Homework

      Adiabatic Compression
      ideal gas internal energy engine Energy and Entropy 2020

      A diesel engine requires no spark plug. Rather, the air in the cylinder is compressed so highly that the fuel ignites spontaneously when sprayed into the cylinder.

      In this problem, you may treat air as an ideal gas, which satisfies the equation \(pV = Nk_BT\). You may also use the property of an ideal gas that the internal energy depends only on the temperature \(T\), i.e. the internal energy does not change for an isothermal process. For air at the relevant range of temperatures the heat capacity at fixed volume is given by \(C_V=\frac52Nk_B\), which means the internal energy is given by \(U=\frac52Nk_BT\).

      Note: in this problem you are expected to use only the equations given and fundamental physics laws. Looking up the formula in a textbook is not considered a solution at this level.

      1. If the air is initially at room temperature (taken as \(20^{o}C\)) and is then compressed adiabatically to \(\frac1{15}\) of the original volume, what final temperature is attained (before fuel injection)?

      2. By what factor does the pressure increase?

    • biotech Microwave oven Ice Calorimetry Lab

      biotech Experiment

      60 min.

      Microwave oven Ice Calorimetry Lab
      Energy and Entropy 2021 (2 years)

      heat entropy water ice thermodynamics

      In this remote-friendly activity, students use a microwave oven (and optionally a thermometer) to measure the latent heat of melting for water (and optionally the heat capacity). From these they compute changes in entropy. See also Ice Calorimetry Lab.
    • assignment Heat capacity of vacuum

      assignment Homework

      Heat capacity of vacuum
      Heat capacity entropy Thermal and Statistical Physics 2020
      1. Solve for the heat capacity of a vacuum, given the above, and assuming that photons represent all the energy present in vacuum.
      2. Compare the heat capacity of vacuum at room temperature with the heat capacity of an equal volume of water.
    • assignment Boltzmann probabilities

      assignment Homework

      Boltzmann probabilities
      Energy Entropy Boltzmann probabilities Thermal and Statistical Physics 2020 (3 years) Consider a three-state system with energies \((-\epsilon,0,\epsilon)\).
      1. At infinite temperature, what are the probabilities of the three states being occupied? What is the internal energy \(U\)? What is the entropy \(S\)?
      2. At very low temperature, what are the three probabilities?
      3. What are the three probabilities at zero temperature? What is the internal energy \(U\)? What is the entropy \(S\)?
      4. What happens to the probabilities if you allow the temperature to be negative?
  • Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.