title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.

Problem

5 min.

Dirac Practice
For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).
  1. Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
  2. For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
  3. What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?