Activities
Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.
Problem
Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
Find the electrostatic potential at a point \(\vec{r}\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.
A series of charges arranged in this way is called a linear quadrupole. Why?
None
- How to represent 3-d scalar fields in several different ways;
- The symmetries of a some simple charge distributions such as a dipole and a quadrupole.