assignment_ind Small White Board Question

10 min.

Possible Worldlines
Theoretical Mechanics (4 years)

Special Relativity Spacetime Diagrams Worldlines Postulates of Relativity

Student consider several curves on a spacetime diagram and have to judge which curves could be worldlines for an object.

accessibility_new Kinesthetic

10 min.

Using Arms to Represent Time Dependence in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

Arms Representation quantum states time dependence Spin 1/2

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to demonstrate time evolution in spin 1/2 quantum systems.

accessibility_new Kinesthetic

10 min.

Using Arms to Represent Overall and Relative Phase in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

quantum states complex numbers arms Bloch sphere relative phase overall phase

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use the Arms representations to represent states of spin 1/2 system. Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT distinguish quantum states) and relative phase (which does distinguish quantum states).

assignment_ind Small White Board Question

10 min.

Time Dilation
Theoretical Mechanics (4 years)

Time Dilation Proper Time Special Relativity

Students answer conceptual questions about time dilation and proper time.

format_list_numbered Sequence

Arms Sequence for Complex Numbers and Quantum States
“Arms” is an engaging representation of complex numbers in which students use their left arms to geometrically represent numbers in the complex plane (an Argand diagram). The sequence starts with pure math activities in which students represent a single complex number (using prompts in both rectangular and exponential forms), demonstrate multiplication of complex numbers in exponential form, and act out a number of different linear transformation on pairs of complex numbers. Later activities, relevant to spin 1/2 systems in quantum mechanics, explore overall phases, relative phases, and time dependence. These activities can be combined and sequenced in many different ways; see the Instructor's Guide for the second activity for ideas about how to introduce the Arms representation the first time you use it.

group Small Group Activity

10 min.

Using Tinker Toys to Represent Spin 1/2 Quantum Systems

spin 1/2 eigenstates quantum states

Arms Sequence for Complex Numbers and Quantum States

Students use Tinker Toys to represent each component in a two-state quantum spin system in all three standard bases (\(x\), \(y\), and \(z\)). Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT change the state of the system) and relative phase (which does change the state of the system). This activity is optional in the Arms Sequence Arms Sequence for Complex Numbers and Quantum States.

assignment Homework

Phase 2
quantum mechanics relative phase overall phase measurement probability Quantum Fundamentals 2023 (3 years) Consider the three quantum states: \[\left\vert \psi_1\right\rangle = \frac{4}{5}\left\vert +\right\rangle+ i\frac{3}{5} \left\vert -\right\rangle\] \[\left\vert \psi_2\right\rangle = \frac{4}{5}\left\vert +\right\rangle- i\frac{3}{5} \left\vert -\right\rangle\] \[\left\vert \psi_3\right\rangle = -\frac{4}{5}\left\vert +\right\rangle+ i\frac{3}{5} \left\vert -\right\rangle\]
  1. For each of the \(\left|{\psi_i}\right\rangle \) above, calculate the probabilities of spin component measurements along the \(x\), \(y\), and \(z\)-axes.
  2. Look For a Pattern (and Generalize): Use your results from \((a)\) to comment on the importance of the overall phase and of the relative phases of the quantum state vector.

face Lecture

30 min.

Lorentz Transformation (Geometric)
Theoretical Mechanics (3 years)

Special Relativity Lorentz Transformation Hyperbola Trig

In this lecture, students see a geometric derivation of the Lorentz Transformation on a spacetime diagram.

accessibility_new Kinesthetic

30 min.

Using Arms to Visualize Transformations of Complex Two-Component Vectors (MathBits)
Quantum Fundamentals 2021

arms complex numbers phase rotation reflection math

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.

computer Mathematica Activity

30 min.

Visualizing Combinations of Spherical Harmonics
Central Forces 2023 (3 years) Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.

assignment Homework

Undo Formulas for Reduced Mass (Geometry)
Central Forces 2023 (3 years)

The figure below shows the position vector \(\vec r\) and the orbit of a “fictitious” reduced mass \(\mu\).

  1. Suppose \(m_1=m_2\), Sketch the position vectors and orbits for \(m_1\) and \(m_2\) corresponding to \(\vec{r}\). Describe a common physics example of central force motion for which \(m_1=m_2\).
  2. Repeat, for \(m_2>m_1\).

group Small Group Activity

30 min.

Right Angles on Spacetime Diagrams
Theoretical Mechanics (4 years)

Special Relativity

Students take the inner product of vectors that lie on the spacetime axis to show that they are orthogonal. To do the inner product, students much use the Minkowski metric.

assignment Homework

Free Expansion
Energy and Entropy 2021 (2 years)

The internal energy is of any ideal gas can be written as \begin{align} U &= U(T,N) \end{align} meaning that the internal energy depends only on the number of particles and the temperature, but not the volume.*

The ideal gas law \begin{align} pV &= Nk_BT \end{align} defines the relationship between \(p\), \(V\) and \(T\). You may take the number of molecules \(N\) to be constant. Consider the free adiabatic expansion of an ideal gas to twice its volume. “Free expansion” means that no work is done, but also that the process is also neither quasistatic nor reversible.
  1. What is the change in entropy of the gas? How do you know this?

  2. What is the change in temperature of the gas?

assignment Homework

Surface temperature of the Earth
Temperature Radiation Thermal and Statistical Physics 2020 Calculate the temperature of the surface of the Earth on the assumption that as a black body in thermal equilibrium it reradiates as much thermal radiation as it receives from the Sun. Assume also that the surface of the Earth is a constant temperature over the day-night cycle. Use the sun's surface temperature \(T_{\odot}=5800\text{K}\); and the sun's radius \(R_{\odot}=7\times 10^{10}\text{cm}\); and the Earth-Sun distance of \(1.5\times 10^{13}\text{cm}\).

assignment Homework

Distribution function for double occupancy statistics
Orbitals Distribution function Thermal and Statistical Physics 2020

Let us imagine a new mechanics in which the allowed occupancies of an orbital are 0, 1, and 2. The values of the energy associated with these occupancies are assumed to be \(0\), \(\varepsilon\), and \(2\varepsilon\), respectively.

  1. Derive an expression for the ensemble average occupancy \(\langle N\rangle\), when the system composed of this orbital is in thermal and diffusive contact with a resevoir at temperature \(T\) and chemical potential \(\mu\).

  2. Return now to the usual quantum mechanics, and derive an expression for the ensemble average occupancy of an energy level which is doubly degenerate; that is, two orbitals have the identical energy \(\varepsilon\). If both orbitals are occupied the toal energy is \(2\varepsilon\). How does this differ from part (a)?

group Small Group Activity

30 min.

Mass is not Conserved
Theoretical Mechanics (4 years)

energy conservation mass conservation collision

Groups are asked to analyze the following standard problem:

Two identical lumps of clay of (rest) mass m collide head on, with each moving at 3/5 the speed of light. What is the mass of the resulting lump of clay?

accessibility_new Kinesthetic

5 min.

Time Dilation Light Clock Skit

Special Relativity Time Dilation Light Clock Kinesthetic Activity

Students act out the classic light clock scenario for deriving time dilation.

group Small Group Activity

30 min.

Gravitational Force

Mechanics Gravitational Force Gravitational Potential Energy Derivatives Introductory Physics

Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.

assignment Homework

Lines in Polar Coordinates
Central Forces 2023 (3 years)

The general equation for a straight line in polar coordinates is given by: \begin{equation} r(\phi)=\frac{r_0}{\cos(\phi-\delta)} \end{equation} where \(r_0\) and \(\delta\) are constant parameters. Find the polar equation for the straight lines below. You do NOT need to evaluate any complicated trig or inverse trig functions. You may want to try plotting the general polar equation to figure out the roles of the parameters.

  1. \(y=3\)
  2. \(x=3\)
  3. \(y=-3x+2\)

assignment Homework

Events on Spacetime Diagrams
Special Relativity Spacetime Diagram Simultaneity Colocation Theoretical Mechanics (4 years)
    1. Which pairs of events (if any) are simultaneous in the unprimed frame?

    2. Which pairs of events (if any) are simultaneous in the primed frame?

    3. Which pairs of events (if any) are colocated in the unprimed frame?

    4. Which pairs of events (if any) are colocated in the primed frame?

  1. For each of the figures, answer the following questions:
    1. Which event occurs first in the unprimed frame?

    2. Which event occurs first in the primed frame?