Activities
Students consider whether the thermo surfaces reflect the properties of an ideal gas.
An introduction to the use of the Raising Calculus surfaces.
Students have to match their surface with the appropriate contour map.
Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral \(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative. They do a similar activity for the vector field \(\vec{G}\) which is not conservative.
Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.
This small group activity using surfaces relates the geometric definition of directional derivatives to the components of the gradient vector. Students work in small groups to measure a directional derivative directly, then compare its components with measured partial derivatives in rectangular coordinates. The whole class wrap-up discussion emphasizes the relationship between the geometric gradient vector and directional derivatives.
First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.
This is the first activity relating the surfaces to the corresponding contour diagrams, thus emphasizing the use of multiple representations.
Students work in small groups to interpret level curves representing different concentrations of lead.
This small group activity using surfaces introduces a geometric interpretation of partial derivatives in terms of measured ratios of small changes. Students work in small groups to identify locations on their surface with particular properties. The whole class wrap-up discussion emphasizes the equivalence of multiple representations of partial derivatives.
This small group activity using surfaces combines practice with the multivariable chain rule while emphasizing numerical representations of derivatives. Students work in small groups to measure partial derivatives in both rectangular and polar coordinates, then verify their results using the chain rule. The whole class wrap-up discussion emphasizes the relationship between a directional derivative in the \(r\)-direction and derivatives in \(x\)- and \(y\)-directions using the chain rule.