assignment Homework

Heat of vaporization of ice
Vaporization Heat Thermal and Statistical Physics 2020 The pressure of water vapor over ice is 518 Pa at \(-2^\circ\text{C}\). The vapor pressure of water at its triple point is 611 Pa, at 0.01\(^\circ\text{C}\) (see Estimate in \(\text{J mol}^{-1}\) the heat of vaporization of ice just under freezing. How does this compare with the heat of vaporization of water?

assignment Homework

Calculation of \(\frac{dT}{dp}\) for water
Clausius-Clapeyron Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.

assignment Homework

Vapor pressure equation
phase transformation Clausius-Clapeyron Thermal and Statistical Physics 2020 Consider a phase transformation between either solid or liquid and gas. Assume that the volume of the gas is way bigger than that of the liquid or solid, such that \(\Delta V \approx V_g\). Furthermore, assume that the ideal gas law applies to the gas phase. Note: this problem is solved in the textbook, in the section on the Clausius-Clapeyron equation.
  1. Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.

  2. Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).

group Small Group Activity

30 min.

“Squishability” of Water Vapor (Contour Map)

Thermo Partial Derivatives

Students determine the “squishibility” (an extensive compressibility) by taking \(-\partial V/\partial P\) holding either temperature or entropy fixed.

group Small Group Activity

5 min.

Heat and Temperature of Water Vapor (Remote)

Thermo Heat Capacity Partial Derivatives

In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

group Small Group Activity

30 min.

Ideal Gas Model

Ideal Gas surfaces thermo

Students should be familiar with the basic definitions of pressure, volume, temperature, and internal energy.

group Small Group Activity

30 min.

Changes in Internal Energy (Remote)

Thermo Internal Energy 1st Law of Thermodynamics

Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.

group Small Group Activity

30 min.

Covariation in Thermal Systems

Thermo Multivariable Functions

Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.

group Small Group Activity

30 min.

Thermodynamic States (Remote)

Thermo

Try doing this activity as a follow-up to the Changes in Internal Energy (Remote) about the first law of thermodynamics.

face Lecture

120 min.

Phase transformations
Thermal and Statistical Physics 2020

phase transformation Clausius-Clapeyron mean field theory thermodynamics

These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.

assignment Homework

Power Plant on a River
efficiency heat engine carnot Energy and Entropy 2021 (2 years)

At a power plant that produces 1 GW (\(10^{9} \text{watts}\)) of electricity, the steam turbines take in steam at a temperature of \(500^{o}C\), and the waste energy is expelled into the environment at \(20^{o}C\).

  1. What is the maximum possible efficiency of this plant?

  2. Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at \(15^oC\). Roughly how much money can you make in a year by installing your improved hardware, if you sell the additional electricity for 10 cents per kilowatt-hour?

  3. At what rate will the plant expel waste energy into this river?

  4. Assume the river's flow rate is 100 m\(^{3}/\)s. By how much will the temperature of the river increase?

  5. To avoid this “thermal pollution” of the river the plant could instead be cooled by evaporation of river water. This is more expensive, but it is environmentally preferable. At what rate must the water evaporate? What fraction of the river must be evaporated?

face Lecture

30 min.

Energy and heat and entropy
Energy and Entropy 2021 (2 years)

latent heat heat capacity internal energy entropy

This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.

group Small Group Activity

30 min.

Quantifying Change

Thermo Derivatives

In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.