computer Computer Simulation

30 min.

Visualization of Power Series Approximations
Theoretical Mechanics (13 years)

Taylor series power series approximation

Power Series Sequence (E&M)

Students use prepared Sage code or a prepared Mathematica notebook to plot \(\sin\theta\) simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.

assignment Homework

Series Convergence

Power Series Sequence (E&M)

Static Fields 2023 (6 years)

Recall that, if you take an infinite number of terms, the power series for \(\sin z\) and the function itself \(f(z)=\sin z\) are equivalent representations of the same thing for all real numbers \(z\), (in fact, for all complex numbers \(z\)). This is what it means for the power series to “converge” for all \(z\). Not all power series converge for all values of the argument of the function. More commonly, a power series is only a valid, equivalent representation of a function for some more restricted values of \(z\), EVEN IF YOUR KEEP AN INFINITE NUMBER OF TERMS. The technical name for this idea is convergence--the series only "converges" to the value of the function on some restricted domain, called the “interval” or “region of convergence.”

Find the power series for the function \(f(z)=\frac{1}{1+z^2}\). Then, using the Geogebra applet from class as a model, or some other computer algebra system like Mathematica or Maple, explore the convergence of this series. Where does your series for this new function converge? Can you tell anything about the region of convergence from the graphs of the various approximations? Print out a plot and write a brief description (a sentence or two) of the region of convergence. You may need to include a lot of terms to see the effect of the region of convergence. You may also need to play with the values of \(z\) that you plot. Keep adding terms until you see a really strong effect!

Note: As a matter of professional ettiquette (or in some cases, as a legal copyright requirement), if you use or modify a computer program written by someone else, you should always acknowledge that fact briefly in whatever you write up. Say something like: “This calculation was based on a (name of software package) program titled (title) originally written by (author) copyright (copyright date).”

group Small Group Activity

30 min.

Calculating Coefficients for a Power Series
Theoretical Mechanics (8 years)

Taylor series power series approximation

Power Series Sequence (E&M)

This activity starts with a brief lecture introduction to power series and a short derivation of the formula for calculating the power series coefficients.

\[c_n={1\over n!}\, f^{(n)}(z_0)\]

Students use this formula to compute the power series coefficients for a \(\sin\theta\) (around both the origin and (if time allows) \(\frac{\pi}{6}\)). The meaning of these coefficients and the convergence behavior for each approximation is discussed in the whole-class wrap-up and in the follow-up activity: Visualization of Power Series Approximations.

assignment_ind Small White Board Question

10 min.

Partial Derivatives from a Contour Map
Static Fields 2023 (4 years)

Gradient Sequence

In this sequence of small whiteboard questions, students are shown the contour graph of a function of two variables and asked to find the derivative. They discover that, without a function to differentiate, they must instead think of the derivative as a ratio of small changes. This requires them to pick two nearby points. Which two?

assignment Homework

Bottle in a Bottle
irreversible helium internal energy work first law Energy and Entropy 2021 (2 years)

The internal energy of helium gas at temperature \(T\) is to a very good approximation given by \begin{align} U &= \frac32 Nk_BT \end{align}

Consider a very irreversible process in which a small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated. What is the change in temperature when this process is complete? How much of the helium will remain in the small bottle?

keyboard Computational Activity

120 min.

Electrostatic potential of four point charges
Computational Physics Lab II 2023 (2 years)

electrostatic potential python

Students write python programs to compute and visualize the potential due to four point charges. For students with minimal programming ability and no python experience, this activity can be a good introduction to writing code in python using numpy and matplotlib.

assignment Homework

Translating Contours
Energy and Entropy 2021 (2 years)

Consider the diagram of \(T\) vs \(V\) for several different constant values of \(p\).

  1. Translate this diagram to a \(p\) vs \(V\) w/ constant \(T\) graph, including the point \(A\). Complete your graph by hand and make a fairly accurate sketch by printing out the attached grid or in some other way making nice square axes with appropriate tick marks.

  2. Are the lines that you drew straight or curved? What feature of the \(TV\) graph would have to change to change this result?

  3. Sketch the line of constant temperature that passes through the point \(A\).

  4. What are the values of all the thermodynamic variables associated with the point A?

group Small Group Activity

30 min.

Ideal Gas Model

Ideal Gas surfaces thermo

Students consider whether the thermo surfaces reflect the properties of an ideal gas.

assignment Homework

Yukawa
Central Forces 2023 (3 years)

In a solid, a free electron doesn't see” a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be screened” from far away. A common model for such problems is described by the Yukawa or screened potential: \begin{equation} U(r)= -\frac{k}{r} e^{-\frac{r}{\alpha}} \end{equation}

  1. Graph the potential, with and without the exponential term. Describe how the Yukawa potential approximates the “real” situation. In particular, describe the role of the parameter \(\alpha\).
  2. Draw the effective potential for the two choices \(\alpha=10\) and \(\alpha=0.1\) with \(k=1\) and \(\ell=1\). For which value(s) of \(\alpha\) is there the possibility of stable circular orbits?

assignment Homework

Effective Potential Diagrams
Central Forces 2023

See also the following more detailed problem and solution: Effective Potentials: Graphical Version

An electron is moving on a two dimension surface with a radially symmetric electrostatic potential given by the graph below:

  1. Sketch the effective potential if the angular momentum is not zero.
  2. Describe qualitatively, the shapes of all possible types of orbits, indicating the energy for each in your diagram.

assignment Homework

Vapor pressure equation
phase transformation Clausius-Clapeyron Thermal and Statistical Physics 2020 Consider a phase transformation between either solid or liquid and gas. Assume that the volume of the gas is way bigger than that of the liquid or solid, such that \(\Delta V \approx V_g\). Furthermore, assume that the ideal gas law applies to the gas phase. Note: this problem is solved in the textbook, in the section on the Clausius-Clapeyron equation.
  1. Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.

  2. Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).

assignment Homework

Approximating a Delta Function with Isoceles Triangles
Static Fields 2023 (6 years)

Remember that the delta function is defined so that \[ \delta(x-a)= \begin{cases} 0, &x\ne a\\ \infty, & x=a \end{cases} \]

Also: \[\int_{-\infty}^{\infty} \delta(x-a)\, dx =1\].

  1. Find a set of functions that approximate the delta function \(\delta(x-a)\) with a sequence of isosceles triangles \(\delta_{\epsilon}(x-a)\), centered at \(a\), that get narrower and taller as the parameter \(\epsilon\) approaches zero.
  2. Using the test function \(f(x)=3x^2\), find the value of \[\int_{-\infty}^{\infty} f(x)\delta_{\epsilon}(x-a)\, dx\] Then, show that the integral approaches \(f(a)\) in the limit that \(\epsilon \rightarrow 0\).

keyboard Computational Activity

120 min.

Kinetic energy
Computational Physics Lab II 2022

finite difference hamiltonian quantum mechanics particle in a box eigenfunctions

Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.

assignment Homework

Gibbs entropy is extensive
Gibbs entropy Probability Thermal and Statistical Physics 2020

Consider two noninteracting systems \(A\) and \(B\). We can either treat these systems as separate, or as a single combined system \(AB\). We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state \((i_A,j_B)\) is given by \(P_{ij}^{AB} = P_i^AP_j^B\). In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.

  1. Show that the entropy of the combined system \(S_{AB}\) is the sum of entropies of the two separate systems considered individually, i.e. \(S_{AB} = S_A+S_B\). This means that entropy is extensive. Use the Gibbs entropy for this computation. You need make no approximation in solving this problem.
  2. Show that if you have \(N\) identical non-interacting systems, their total entropy is \(NS_1\) where \(S_1\) is the entropy of a single system.

Note
In real materials, we treat properties as being extensive even when there are interactions in the system. In this case, extensivity is a property of large systems, in which surface effects may be neglected.

group Small Group Activity

10 min.

Survivor Outer Space: A kinesthetic approach to (re)viewing center-of-mass
Central Forces 2023 (3 years) A group of students, tethered together, are floating freely in outer space. Their task is to devise a method to reach a food cache some distance from their group.

group Small Group Activity

30 min.

Quantifying Change

Thermo Derivatives

In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.

assignment Homework

Tetrahedron
Static Fields 2023 (7 years)

Using a dot product, find the angle between any two line segments that join the center of a regular tetrahedron to its vertices. Hint: Think of the vertices of the tetrahedron as sitting at the vertices of a cube (at coordinates (0,0,0), (1,1,0), (1,0,1) and (0,1,1)---you may need to build a model and play with it to see how this works!)

face Lecture

5 min.

Unit Learning Outcomes: Classical Mechanics Orbits
Central Forces 2023 This handout lists Motivating Questions, Key Activities/Problems, Unit Learning Outcomes, and an Equation Sheet for a Unit on Classical Mechanics Orbits. It can be used both to introduce the unit and, even better, for review.

group Small Group Activity

30 min.

Electric Potential of Two Charged Plates
Students examine a plastic "surface" graph of the electric potential due to two charged plates (near the center of the plates) and explore the properties of the electric potential.

group Small Group Activity

30 min.

The Hillside
Vector Calculus I 2022 (2 years)

Gradient Sequence

Students work in groups to measure the steepest slope and direction on a plastic surface, and to compare their result with the gradient vector, obtained by measuring its components (the slopes in the coordinate directions).