1. Find the Fourier transforms of \(f(x)=\cos kx\) and \(g(x)=\sin kx\).
  2. Find the Fourier transform of \(g(x)\) using the formula for the Fourier transform of a derivative and your result for the Fourier transform of \(f(x)\). Compare with your previous answer.
  3. In quantum mechanics, the Fourier transform is the set of coefficients in the expansion of a quantum state in terms of plane waves, i.e. the function \(\tilde{f}(k)\) is a continuous histogram of how much each functions \(e^{ikx}\) contributes to the quantum state. What does the Fourier transform of the function \(\cos kx\) tell you about which plane waves make up this quantum state? Write a sentence or two about how this makes sense.
  • Found in: Periodic Systems course(s)

On the following diagrams, mark both \(\theta\) and \(\sin\theta\) for \(\theta_1=\frac{5\pi}{6}\) and \(\theta_2=\frac{7\pi}{6}\). Write one to three sentences about how these two representations are related to each other. (For example, see: this PHET)

  • Found in: Quantum Fundamentals course(s)

Homogeneous, linear ODEs with constant coefficients were likely covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see:

Constant Coefficients, Homogeneous

or your differential equations text.

Answer the following questions for each differential equation below:

  • identify the order of the equation,
  • find the number of linearly independent solutions,
  • find an appropriate set of linearly independent solutions, and
  • find the general solution.
Each equation has different notations so that you can become familiar with some common notations.
  1. \(\ddot{x}-\dot{x}-6x=0\)
  2. \(y^{\prime\prime\prime}-3y^{\prime\prime}+3y^{\prime}-y=0\)
  3. \(\frac{d^2w}{dz^2}-4\frac{dw}{dz}+5w=0\)

  • Found in: None, Oscillations and Waves course(s)
Find the total differential of the following functions:
  1. \(y=3x^2 + 4\cos 2x\)
  2. \(y=3x^2\cos kx\) (where \(k\) is a constant)
  3. \(y=\frac{\cos 7x}{x^2}\)
  4. \(y=\cos(3x^2-2)\)
  • Found in: Static Fields, AIMS Maxwell course(s)

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

  1. Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
  2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
  3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
  4. Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

  • Found in: E&M Ring Cycle Sequence sequence(s) Found in: Static Fields, AIMS Maxwell course(s)

The general solution of the homogeneous differential equation

\[\ddot{x}-\dot{x}-6 x=0\]

is

\[x(t)=A\, e^{3t}+ B\, e^{-2t}\]

where \(A\) and \(B\) are arbitrary constants that would be determined by the initial conditions of the problem.

  1. Find a particular solution of the inhomogeneous differential equation \(\ddot{x}-\dot{x}-6 x=-25\sin(4 t)\).

  2. Find the general solution of \(\ddot{x}-\dot{x}-6 x=-25\sin(4 t)\).

  3. Some terms in your general solution have an undetermined coefficients, while some coefficients are fully determined. Explain what is different about these two cases.

  4. Find a particular solution of \(\ddot{x}-\dot{x}-6 x=12 e^{-3 t}\)

  5. Find the general solution of \(\ddot{x}-\dot{x}-6 x=12 e^{-3 t}-25\sin(4 t)\)

    How is this general solution related to the particular solutions you found in the previous parts of this question?

    Can you add these particular solutions together with arbitrary coefficients to get a new particular solution?

  6. Sense-making: Check your answer; Explicitly plug in your final answer in part (e) and check that it satisfies the differential equation.

  • Found in: None, Oscillations and Waves course(s)

group Small Group Activity

30 min.

Wavefunctions on a Quantum Ring
This activity lets students explore translating a wavefunction that isn't obviously made up of eigenstates at first glance into ket and matrix form. Then students explore wave functions, probabilities in a region, expectation values, and what wavefunctions can tell you about measurements of \(L_z\).

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring Part 1
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge

Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.