title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Problem

Diatomic hydrogen

At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}

1. What is the energy of the ground state and the first and second excited states of the $H_2$ molecule? i.e. the lowest three distinct energy eigenvalues.

2. At room temperature, what is the relative probability of finding a hydrogen molecule in the $\ell=0$ state versus finding it in any one of the $\ell=1$ states?
i.e. what is $P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)$

3. At what temperature is the value of this ratio 1?

4. At room temperature, what is the probability of finding a hydrogen molecule in any one of the $\ell=2$ states versus that of finding it in the ground state?
i.e. what is $P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)$

• Found in: Energy and Entropy course(s)