computer Mathematica Activity

30 min.

Static Fields 2023 (7 years)

Students use prepared Sage code to predict the gradient from contour graphs of 2D scalar fields.

format_list_numbered Sequence

##### Quantum Ring Sequence
Students calculate probabilities and expectation values for a quantum mechanical particle confined to a circular ring in bra/ket, matrix, and wave function representations and compare the different calculation methods. Several different graphical representations of the time dependence for both states with special symmetry and arbitrary states are explored in a Mathematica notebook. Compared to the analogous particle-in-a-box, this quantum system has a new feature---degenerate energy eigenstates.

computer Mathematica Activity

30 min.

##### Effective Potentials
Central Forces 2023 (3 years) Students use a pre-written Mathematica notebook or a Geogebra applet to explore how the shape of the effective potential function changes as the various parameters (angular momentum, force constant, reduced mass) are varied.

computer Computer Simulation

30 min.

##### Visualizing Flux through a Cube
Static Fields 2023 (6 years) Students explore the effects of putting a point charge at various places inside, outside, and on the surface of a cubical Gaussian surface. The Mathematica worksheet or Sage activity shows the electric field due to the charge, then plots the the flux integrand on the top surface of the box, calculates the flux through the top of the box, and the value of the flux through the whole cube.

computer Mathematica Activity

30 min.

##### Using Technology to Visualize Potentials
Static Fields 2023 (6 years)

Begin by prompting the students to brainstorm different ways to represent a three dimensional scalar field on a 2-D surface (like their paper or a whiteboard). The students use a pre-made Sage code or a Mathematica worksheet to visualize the electrostatic potential of several distributions of charges. The computer algebra systems demonstrate several different ways of plotting the potential.

computer Mathematica Activity

30 min.

##### Visualization of Quantum Probabilities for the Hydrogen Atom
Central Forces 2023 (3 years) Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of $n$, $\ell$, and $m$.

computer Mathematica Activity

30 min.

##### Visualizing Combinations of Spherical Harmonics
Central Forces 2023 (3 years) Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.

computer Computer Simulation

30 min.

##### Visualization of Power Series Approximations
Theoretical Mechanics (13 years)

Power Series Sequence (E&M)

Students use prepared Sage code or a prepared Mathematica notebook to plot $\sin\theta$ simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.

computer Mathematica Activity

30 min.

##### Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2023 (3 years)

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

group Small Group Activity

30 min.

##### Conic Sections
Central Forces 2023 (3 years) Students are asked to explore the parameters that affect orbit shape using the supplied Maple worksheet or Mathematica notebook.

assignment Homework

##### Ring Function
Central Forces 2023 (3 years) Consider the normalized wavefunction $\Phi\left(\phi\right)$ for a quantum mechanical particle of mass $\mu$ constrained to move on a circle of radius $r_0$, given by: $$\Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)}$$ where $N$ is the normalization constant.
1. Find $N$.

2. Plot this wave function.
3. Plot the probability density.
4. Find the probability that if you measured $L_z$ you would get $3\hbar$.
5. What is the expectation value of $L_z$ in this state?

group Small Group Activity

120 min.

##### Equipotential Surfaces

Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.

group Small Group Activity

30 min.

##### Visualization of Divergence
Vector Calculus II 23 (12 years) Students predict from graphs of simple 2-d vector fields whether the divergence is positive, negative, or zero in various regions of the domain using the definition of the divergence of a vector field at a point: The divergence of a vector field at a point is flux per unit volume through an infinitesimal box surrounding that point. Optionally, students can use a Mathematica notebook to verify their predictions.

assignment Homework

##### Visualization of Wave Functions on a Ring
Central Forces 2023 (3 years) Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
1. Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
2. Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
3. Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
4. Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.

assignment Homework

##### Wavefunctions
Quantum Fundamentals 2023 (3 years)

Consider the following wave functions (over all space - not the infinite square well!):

$\psi_a(x) = A e^{-x^2/3}$

$\psi_b(x) = B \frac{1}{x^2+2}$

$\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)$ (“sech” is the hyperbolic secant function.)

In each case:

1. normalize the wave function,
2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
3. find the probability that the particle is measured to be in the range $0<x<1$.

group Small Group Activity

60 min.

##### Visualizing Plane Waves

Each small group of 3-4 students is given a white board or piece of paper with a square grid of points on it.

Each group is given a different two-dimensional vector $\vec{k}$ and is asked to calculate the value of $\vec{k} \cdot \vec {r}$ for each point on the grid and to draw the set of points with constant value of $\vec{k} \cdot \vec{r}$ using rainbow colors to indicate increasing value.

assignment Homework

##### Series Convergence

Power Series Sequence (E&M)

Static Fields 2023 (6 years)

Recall that, if you take an infinite number of terms, the power series for $\sin z$ and the function itself $f(z)=\sin z$ are equivalent representations of the same thing for all real numbers $z$, (in fact, for all complex numbers $z$). This is what it means for the power series to “converge” for all $z$. Not all power series converge for all values of the argument of the function. More commonly, a power series is only a valid, equivalent representation of a function for some more restricted values of $z$, EVEN IF YOUR KEEP AN INFINITE NUMBER OF TERMS. The technical name for this idea is convergence--the series only "converges" to the value of the function on some restricted domain, called the “interval” or “region of convergence.”

Find the power series for the function $f(z)=\frac{1}{1+z^2}$. Then, using the Geogebra applet from class as a model, or some other computer algebra system like Mathematica or Maple, explore the convergence of this series. Where does your series for this new function converge? Can you tell anything about the region of convergence from the graphs of the various approximations? Print out a plot and write a brief description (a sentence or two) of the region of convergence. You may need to include a lot of terms to see the effect of the region of convergence. You may also need to play with the values of $z$ that you plot. Keep adding terms until you see a really strong effect!

Note: As a matter of professional ettiquette (or in some cases, as a legal copyright requirement), if you use or modify a computer program written by someone else, you should always acknowledge that fact briefly in whatever you write up. Say something like: “This calculation was based on a (name of software package) program titled (title) originally written by (author) copyright (copyright date).”

group Small Group Activity

30 min.

##### Electric Field Due to a Ring of Charge
Static Fields 2023 (8 years)

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use Coulomb's Law $\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}$ to find an integral expression for the electric field, $\vec{E}(\vec{r})$, everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for $\vec{E}(\vec{r})$ either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

##### Magnetic Vector Potential Due to a Spinning Charged Ring
Static Fields 2023 (6 years)

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use the superposition principle $\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}$ to find an integral expression for the magnetic vector potential, $\vec{A}(\vec{r})$, due to a spinning ring of charge.

In an optional extension, students find a series expansion for $\vec{A}(\vec{r})$ either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

##### Electrostatic Potential Due to a Ring of Charge
Static Fields 2023 (8 years)

Power Series Sequence (E&M)

Warm-Up

Ring Cycle Sequence

Students work in small groups to use the superposition principle $V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}$ to find an integral expression for the electrostatic potential, $V(\vec{r})$, everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for $V(\vec{r})$ either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.