title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of \(n\), \(\ell\), and \(m\).
Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.

Computer Simulation

30 min.

Visualization of Power Series Approximations
Students use prepared Sage code or a prepared Mathematica notebook to plot \(\sin\theta\) simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.
  • Taylor series power series approximation
    Found in: Theoretical Mechanics, Static Fields, Central Forces, AIMS Maxwell, Problem-Solving, None course(s) Found in: Power Series Sequence (Mechanics), Power Series Sequence (E&M) sequence(s)

Small Group Activity

30 min.

Conic Sections
Students are asked to explore the parameters that affect orbit shape using the supplied Maple worksheet or Mathematica notebook.
  • Found in: Central Forces course(s)

Mathematica Activity

30 min.

Effective Potentials
Students use a pre-written Mathematica notebook or a Geogebra applet to explore how the shape of the effective potential function changes as the various parameters (angular momentum, force constant, reduced mass) are varied.

Computer Simulation

30 min.

Visualizing Flux through a Cube
Students explore the effects of putting a point charge at various places inside, outside, and on the surface of a cubical Gaussian surface. The Mathematica worksheet or Sage activity shows the electric field due to the charge, then plots the the flux integrand on the top surface of the box, calculates the flux through the top of the box, and the value of the flux through the whole cube.
  • Found in: Static Fields, AIMS Maxwell, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Gauss/Ampere Sequence (Integral Form), Geometry of Vector Fields Sequence, Flux Sequence sequence(s)

Mathematica Activity

30 min.

Using Technology to Visualize Potentials
Begin by prompting the students to brainstorm different ways to represent a three dimensional scalar field on a 2-D surface (like their paper or a whiteboard). The students use a pre-made Sage code or a Mathematica worksheet to visualize the electrostatic potential of several distributions of charges. The computer algebra systems demonstrate several different ways of plotting the potential.