This short small group activity introduces students to the Leibniz notation used for partial derivatives in thermodynamics; unlike standard Leibniz notation, this notation explicitly specifies constant variables. Students are guided in linking the variables from a contextless Leibniz-notation partial derivative to their proper variable categories.

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

Write (a good guess for) the following series using sigma \(\left(\sum\right)\) notation. (If you only know a few terms of a series, you don't know for sure how the series continues.)