format_list_numbered Sequence

Curvilinear Coordinate Sequence
The curvilinear coordinate sequence introduces cylindrical and spherical coordinates (including inconsistencies between physicists' and mathematicians' notational conventions) and the basis vectors adapted to these coordinate systems.

group Small Group Activity

10 min.

Generalized Leibniz Notation
Static Fields 2023 (6 years) This short small group activity introduces students to the Leibniz notation used for partial derivatives in thermodynamics; unlike standard Leibniz notation, this notation explicitly specifies constant variables. Students are guided in linking the variables from a contextless Leibniz-notation partial derivative to their proper variable categories.

assignment Homework

Series Notation 2

Power Series Sequence (E&M)

Static Fields 2023 (6 years)

Write (a good guess for) the following series using sigma \(\left(\sum\right)\) notation. (If you only know a few terms of a series, you don't know for sure how the series continues.)

  1. \[1 - 2\,\theta^2 + 4\,\theta^4 - 8\,\theta^6 +\,\dots\]

  2. \[\frac14 - \frac19 + \frac{1}{16} - \frac{1}{25}+\,\dots\]

face Lecture

30 min.

Compare & Contrast Kets & Wavefunctions

Bra-Ket Notations Wavefunction Notation Completeness Relations Probability Probability Density

Completeness Relations

In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.

format_list_numbered Sequence

Power Series Sequence (E&M)

The first three activities provide an active-engagement version of the canonical mathematical and geometric fundamentals for power series. The subsequent activities apply these ideas to physical situations that are appropriate for an upper-division electromagnetism course, using concepts, terminology, and techniques that are common among physicists, but not often taught in mathematics courses. In particular students use the memorized formula for the binomial expansion to evaluate various electrostatic and magnetostatic field in regions of high symmetry. By factoring out a physical quantity which is large compared to another physical quantity, they manipulate the formulas for these fields into a form where memorized formulas apply. The results for the different regions of high symmetry are compared and contrasted. A few homework problems that emphasize the meaning of series notation are included.

Note: The first two activities are also included in Power Series Sequence (Mechanics) and can be skipped in E&M if already taught in Mechanics.

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

group Small Group Activity

30 min.

\(|\pm\rangle\) Forms an Orthonormal Basis
Quantum Fundamentals 2023 (3 years)

Cartesian Basis $S_z$ basis completeness normalization orthogonality basis

Completeness Relations

Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.

assignment Homework

Dimensional Analysis of Kets
dirac notation dimensions probability completeness relations

Completeness Relations

  1. \(\left\langle {\Psi}\middle|{\Psi}\right\rangle =1\) Identify and discuss the dimensions of \(\left|{\Psi}\right\rangle \).
  2. For a spin \(\frac{1}{2}\) system, \(\left\langle {\Psi}\middle|{+}\right\rangle \left\langle {+}\middle|{\Psi}\right\rangle + \left\langle {\Psi}\middle|{-}\right\rangle \left\langle {-}\middle|{\Psi}\right\rangle =1\). Identify and discuss the dimensions of \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
  3. In the position basis \(\int \left\langle {\Psi}\middle|{x}\right\rangle \left\langle {x}\middle|{\Psi}\right\rangle dx = 1\). Identify and discuss the dimesions of \(\left|{x}\right\rangle \).

assignment Homework

Derivative of Fermi-Dirac function
Fermi-Dirac function Thermal and Statistical Physics 2020 Derivative of Fermi-Dirac function Show that the magnitude of the slope of the Fermi-Direc function \(f\) evaluated at the Fermi level \(\varepsilon =\mu\) is inversely proportional to its temperature. This means that at lower temperatures the Fermi-Dirac function becomes dramatically steeper.

assignment_ind Small White Board Question

10 min.

Curvilinear Coordinates Introduction
Static Fields 2023 (11 years)

Cylindrical coordinates spherical coordinates curvilinear coordinates

Curvilinear Coordinate Sequence

First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.

assignment Homework

Normalization of Quantum States
Central Forces 2023 (3 years) Show that if a linear combination of ring energy eigenstates is normalized, then the coefficients must satisfy \begin{equation} \sum_{m=-\infty}^{\infty} \vert c_m\vert^2=1 \end{equation}

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

group Small Group Activity

30 min.

Hydrogen Probabilities in Matrix Notation
Central Forces 2023 (2 years)

group Small Group Activity

60 min.

Going from Spin States to Wavefunctions
Quantum Fundamentals 2023 (2 years)

Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation

Arms Sequence for Complex Numbers and Quantum States

Completeness Relations

Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.

assignment Homework

Series Notation 1

Power Series Sequence (E&M)

Static Fields 2023 (6 years)

Write out the first four nonzero terms in the series:

  1. \[\sum\limits_{n=0}^\infty \frac{1}{n!}\]

  2. \[\sum\limits_{n=1}^\infty \frac{(-1)^n}{n!}\]
  3. \begin{equation} \sum\limits_{n=0}^\infty {(-2)^{n}\,\theta^{2n}} \end{equation}

group Small Group Activity

60 min.

Raising and Lowering Operators for Spin
Central Forces 2023 (2 years)

assignment Homework

Visualization of Wave Functions on a Ring
Central Forces 2023 (3 years) Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
  1. Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
  2. Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
  3. Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
  4. Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.

assignment Homework

Quantum Particle in a 2-D Box
Central Forces 2023 (4 years) You know that the normalized spatial eigenfunctions for a particle in a 1-D box of length \(L\) are \(\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}\). If you want the eigenfunctions for a particle in a 2-D box, then you just multiply together the eigenfunctions for a 1-D box in each direction. (This is what the separation of variables procedure tells you to do.)
  1. Find the normalized eigenfunctions for a particle in a 2-D box with sides of length \(L_x\) in the \(x\)-direction and length \(L_y\) in the \(y\)-direction.
  2. Find the Hamiltonian for a 2-D box and show that your eigenstates are indeed eigenstates and find a formula for the possible energies
  3. Any sufficiently smooth spatial wave function inside a 2-D box can be expanded in a double sum of the product wave functions, i.e. \begin{equation} \psi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\; \hbox{eigenfunction}_n(x)\;\hbox{eigenfunction}_m(y) \end{equation} Using your expressions from part (a) above, write out all the terms in this sum out to \(n=3\), \(m=3\). Arrange the terms, conventionally, in terms of increasing energy.

    You may find it easier to work in bra/ket notation: \begin{align*} \left|{\psi}\right\rangle &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{n}\right\rangle \left|{m}\right\rangle \\ &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{nm}\right\rangle \end{align*}

  4. Find a formula for the \(c_{nm}\)s in part (b). Find the formula first in bra ket notation and then rewrite it in wave function notation.

assignment Homework

Homogeneous Linear ODE's with Constant Coefficients
ODEs math bits Oscillations and Waves 2023 (2 years)

Homogeneous, linear ODEs with constant coefficients were likely covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see:

Constant Coefficients, Homogeneous

or your differential equations text.

Answer the following questions for each differential equation below:

  • identify the order of the equation,
  • find the number of linearly independent solutions,
  • find an appropriate set of linearly independent solutions, and
  • find the general solution.
Each equation has different notations so that you can become familiar with some common notations.
  1. \(\ddot{x}-\dot{x}-6x=0\)
  2. \(y^{\prime\prime\prime}-3y^{\prime\prime}+3y^{\prime}-y=0\)
  3. \(\frac{d^2w}{dz^2}-4\frac{dw}{dz}+5w=0\)

group Small Group Activity

120 min.

Representations of the Infinite Square Well
Quantum Fundamentals 2023 (3 years)

Warm-Up