format_list_numbered Sequence

Quantum Ring Sequence
Students calculate probabilities and expectation values for a quantum mechanical particle confined to a circular ring in bra/ket, matrix, and wave function representations and compare the different calculation methods. Several different graphical representations of the time dependence for both states with special symmetry and arbitrary states are explored in a Mathematica notebook. Compared to the analogous particle-in-a-box, this quantum system has a new feature---degenerate energy eigenstates.

assignment Homework

Ring Table
Central Forces 2023 (3 years)

Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table

format_list_numbered Sequence

Ring Cycle Sequence
Students calculate electrostatic fields (\(V\), \(\vec{E}\)) and magnetostatic fields (\(\vec{A}\), \(\vec{B}\)) from charge and current sources with a common geometry. The sequence of activities is arranged so that the mathematical complexity of the formulas students encounter increases with each activity. Several auxiliary activities allow students to focus on the geometric/physical meaning of the distance formula, charge densities, and steady currents. A meta goal of the entire sequence is that students gain confidence in their ability to parse and manipulate complicated equations.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge
Static Fields 2022 (7 years)

coulomb's law electric field charge ring symmetry integral power series superposition

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring
Theoretical Mechanics (6 years)

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge
Static Fields 2022 (7 years)

electrostatic potential charge linear charge density taylor series power series scalar field superposition symmetry distance formula

Power Series Sequence (E&M)

Ring Cycle Sequence

Warm-Up

Students work in groups of three to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

assignment Homework

Visualization of Wave Functions on a Ring
Central Forces 2023 (3 years) Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
  1. Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
  2. Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
  3. Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
  4. Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge
Static Fields 2022 (6 years)

magnetic fields current Biot-Savart law vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

group Small Group Activity

30 min.

Magnetic Vector Potential Due to a Spinning Charged Ring
Static Fields 2022 (5 years)

compare and contrast mathematica magnetic vector potential magnetic fields vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

assignment Homework

Normalization of Quantum States
Central Forces 2023 (3 years) Show that if a linear combination of ring energy eigenstates is normalized, then the coefficients must satisfy \begin{equation} \sum_{m=-\infty}^{\infty} \vert c_m\vert^2=1 \end{equation}

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

face Lecture

30 min.

Time Evolution Refresher (Mini-Lecture)
Central Forces 2023 (3 years)

schrodinger equation time dependence stationary states

Quantum Ring Sequence

The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.

group Small Group Activity

30 min.

Working with Representations on the Ring
Central Forces 2023 (3 years)

group Small Group Activity

30 min.

Wavefunctions on a Quantum Ring
Central Forces 2023 (2 years)

assignment Homework

Ring Function
Central Forces 2023 (3 years) Consider the normalized wavefunction \(\Phi\left(\phi\right)\) for a quantum mechanical particle of mass \(\mu\) constrained to move on a circle of radius \(r_0\), given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where \(N\) is the normalization constant.
  1. Find \(N\).

  2. Plot this wave function.
  3. Plot the probability density.
  4. Find the probability that if you measured \(L_z\) you would get \(3\hbar\).
  5. What is the expectation value of \(L_z\) in this state?

face Lecture

5 min.

Quantum Reference Sheet
Central Forces 2023 (6 years)

assignment Homework

Working with Representations on the Ring
Central Forces 2023 (3 years)

The following are 3 different representations for the \(\textbf{same}\) state on a quantum ring for \(r_0=1\) \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}

  1. With each representation of the state given above, explicitly calculate the probability that \(L_z=-1\hbar\). Then, calculate all other non-zero probabilities for values of \(L_z\) with a method/representation of your choice.
  2. Explain how you could be sure you calculated all of the non-zero probabilities.
  3. If you measured the \(z\)-component of angular momentum to be \(3\hbar\), what would the state of the particle be immediately after the measurement is made?
  4. With each representation of the state given above, explicitly calculate the probability that \(E=\frac{9}{2}\frac{\hbar^2}{I}\). Then, calculate all other non-zero probabilities for values of \(E\) with a method of your choice.
  5. If you measured the energy of the state to be \(\frac{9}{2}\frac{\hbar^2}{I}\), what would the state of the particle be immediately after the measurement is made?